Informations personnelles
Bruno MASENELLI

Professeur des Universités INSA

Localisation INL
Site INSA
Bâtiment Blaise Pascal
7 avenue Jean Capelle
69621 VILLEURBANNE CEDEX
France
Téléphone (33).04 72 43 74 72
Courriel bruno.masenelli@insa-lyon.fr
   
Activités de recherche    Publications
Activités de recherche

Département : Matériaux

Equipe de recherche : Spectroscopies et Nanomatériaux


Domaine d'activités

Plateforme : NULL

Publications des 5 dernières années
LECLERCQ Jean-Louis
Chercheur

Localisation Site INSA,ECL,UCB,CPE
Téléphone (33).04 72 18 65 63
Courriel jean-louis.leclercq@ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
McADAMS Eric
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 89 86
Courriel eric.mcadams@insa-lyon.fr
Equipe(s) de recherche Capteurs Biomédicaux
Plus de détails  
×
MARCHAND Cédric
Enseignant chercheur

Localisation Site ECL
Téléphone (33).04 72 18 60 38
Courriel cedric.marchand@ec-lyon.fr
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
BRIK Adil
Chercheur non permanent

Localisation Site ECL
Téléphone (33).
Courriel adil.brik@ec-lyon.fr
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
HAN Dong
Chercheur non permanent

Localisation Site ECL
Téléphone (33).04 72 18 60 86
Courriel dong.han@ec-lyon.fr
Equipe(s) de recherche Hétéroépitaxie et Nanostructures
Plus de détails  
×
TAITT Rachael
Chercheur non permanent

Localisation Site ECL
Téléphone (33).
Courriel rachael.taitt@ec-lyon.fr
Equipe(s) de recherche Chimie et Nanobiotechnologies
Plus de détails  
×
DEMONGODIN Pierre
Chercheur non permanent

Localisation Site ECL
Téléphone (33).04 72 18 60 40
Courriel pierre.demongodin@ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
DELLA TORRE Alberto
Chercheur non permanent

Localisation Site ECL
Téléphone (33).
Courriel alberto.della-torre@ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
RODICHKINA Sofia
Chercheur non permanent

Localisation Site INSA
Téléphone (33).
Courriel sofia.rodichkina@insa-lyon.fr
Equipe(s) de recherche Spectroscopies et Nanomatériaux
Plus de détails  
×
MAHATO Prabir
Chercheur non permanent

Localisation Site INSA
Téléphone (33).
Courriel prabir.mahato@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
GRENET Geneviève
Chercheur

Localisation Site ECL
Téléphone (33).04 72 18 60 58
Courriel genevieve.grenet@ec-lyon.fr
Equipe(s) de recherche Hétéroépitaxie et Nanostructures
Plus de détails  
×
GOURE Jean-Baptiste
IATOS ITA

Localisation Site ECL
Téléphone (33).04 72 18 60 85
Courriel jean-baptiste.goure@ec-lyon.fr
Equipe(s) de recherche Hétéroépitaxie et Nanostructures
Plus de détails  
×
GENDRY Michel
Chercheur

Localisation Site ECL
Téléphone (33).04 72 18 60 50
Courriel michel.gendry@ec-lyon.fr
Equipe(s) de recherche Hétéroépitaxie et Nanostructures
Plus de détails  
×
GAFFIOT Frédéric
Enseignant chercheur

Localisation Site ECL
Téléphone (33).04 72 18 60 47
Courriel frederic.gaffiot@ec-lyon.fr
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
DEVIF Brice
IATOS ITA

Localisation Site ECL
Téléphone (33).04 72 18 62 38
Courriel brice.devif@ec-lyon.fr
Equipe(s) de recherche Plateforme NanoLyon
Plus de détails  
×
CARREL Laurent
IATOS ITA

Localisation Site ECL
Téléphone (33).04 72 18 61 41
Courriel laurent.carrel@ec-lyon.fr
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
CREMILLIEU Pierre
IATOS ITA

Localisation Site ECL
Téléphone (33).04 72 18 60 41
Courriel pierre.cremillieu@ec-lyon.fr
Equipe(s) de recherche Plateforme NanoLyon
Plus de détails  
×
BOTELLA Claude
IATOS ITA

Localisation Site ECL
Téléphone (33).04 72 18 67 20
Courriel claude.botella@ec-lyon.fr
Equipe(s) de recherche Hétéroépitaxie et Nanostructures
Plus de détails  
×
CALLARD Ségolène
Enseignant chercheur

Localisation Site ECL
Téléphone (33).04 72 18 62 58
Courriel segolene.callard@ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
DEGOUTTES Jérôme
IATOS ITA

Localisation Site UCB
Téléphone (33).04 72 44 62 82
Courriel jerome.degouttes@univ-lyon1.fr
Equipe(s) de recherche Plateforme NanoLyon
Plus de détails  
×
MARTINEZ Jaime
Chercheur non permanent

Localisation Site UCB
Téléphone (33).04 72 43 14 33
Courriel jaime-andres.martinez-santamaria@univ-lyon1.fr
Equipe(s) de recherche Lab-On-Chip et Instrumentation
Plus de détails  
×
MOULIN Nelly
Chercheur non permanent

Localisation Site INSA
Téléphone (33).
Courriel nelly.moulin@insa-lyon.fr
Equipe(s) de recherche Photovoltaïque
Plus de détails  
×
LETARTRE Xavier
Chercheur

Localisation Site ECL
Téléphone (33).04 72 18 60 81
Courriel xavier.letartre@ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
MARTIN Thérèse
IATOS ITA

Localisation Site ECL
Téléphone (33).04 72 18 62 51
Courriel therese.martin@ec-lyon.fr
Equipe(s) de recherche Service administratif et financier
Plus de détails  
×
PHANER-GOUTORBE Magali
Enseignant chercheur

Localisation Site ECL
Téléphone (33).04 72 18 62 32
Courriel magali.phaner@ec-lyon.fr
Equipe(s) de recherche Chimie et Nanobiotechnologies
Plus de détails  
×
REGRENY Philippe
IATOS ITA

Localisation Site ECL
Téléphone (33).04 72 18 60 48
Courriel philippe.regreny@ec-lyon.fr
Equipe(s) de recherche Hétéroépitaxie et Nanostructures
Plus de détails  
×
ROBACH Yves
Enseignant chercheur

Localisation Site ECL
Téléphone (33).04 72 18 62 44
Courriel yves.robach@ec-lyon.fr
Equipe(s) de recherche Hétéroépitaxie et Nanostructures
Plus de détails  
×
ROJO ROMEO Pedro
Enseignant chercheur

Localisation Site ECL
Téléphone (33).04 72 18 65 41
Courriel pedro.rojo-romeo@ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
SEASSAL Christian
Chercheur

Localisation Site INSA,ECL,UCB,CPE
Téléphone (33).04 72 18 60 64
(33).04 72 43 71 87
Courriel christian.seassal@ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
VIKTOROVITCH Pierre
Chercheur

Localisation Site ECL
Téléphone (33).04 72 18 60 66
Courriel pierre.viktorovitch@ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
O CONNOR Ian
Enseignant chercheur

Localisation Site ECL
Téléphone (33).04 72 18 60 54
Courriel ian.oconnor@ec-lyon.fr
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
CLOAREC Jean-Pierre
Enseignant chercheur

Localisation Site ECL
Téléphone (33).04 72 18 62 52
Courriel jean-pierre.cloarec@ec-lyon.fr
Equipe(s) de recherche Chimie et Nanobiotechnologies
Plus de détails  
×
NAVARRO David
Enseignant chercheur

Localisation Site ECL
Téléphone (33).04 72 18 63 98
Courriel david.navarro@ec-lyon.fr
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
VILQUIN Bertrand
Enseignant chercheur

Localisation Site ECL
Téléphone (33).04 72 18 62 54
Courriel bertrand.vilquin@ec-lyon.fr
Equipe(s) de recherche Hétéroépitaxie et Nanostructures
Plus de détails  
×
DROUARD Emmanuel
Enseignant chercheur

Localisation Site ECL
Téléphone (33).04 72 18 62 45
Courriel emmanuel.drouard@ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
MAZURCZYK Radoslaw
IATOS ITA

Localisation Site ECL
Téléphone (33).04 72 18 65 48
Courriel radoslaw.mazurczyk@ec-lyon.fr
Equipe(s) de recherche Plateforme NanoLyon
Plus de détails  
×
LAURENCEAU Emmanuelle
Enseignant chercheur

Localisation Site ECL
Téléphone (33).04 72 18 62 40
Courriel emmanuelle.laurenceau@ec-lyon.fr
Equipe(s) de recherche Chimie et Nanobiotechnologies
Plus de détails  
×
CHEVOLOT Yann
Chercheur

Localisation Site ECL
Téléphone (33).04 72 18 62 40
Courriel yann.chevolot@ec-lyon.fr
Equipe(s) de recherche Chimie et Nanobiotechnologies
Plus de détails  
×
AL ATEM Abdul Salam
Chercheur non permanent

Localisation Site INSA
Téléphone (33).04 72 43 74 62
Courriel abdul-salam.al-atem@insa-lyon.fr
Equipe(s) de recherche Spectroscopies et Nanomatériaux
Plus de détails  
×
CHANCEREL François
Chercheur non permanent

Localisation Site ECL
Téléphone (33).04 72 18 60 86
Courriel francois.chancerel@doctorant.ec-lyon.fr
Equipe(s) de recherche Hétéroépitaxie et Nanostructures
Plus de détails  
×
MORENO VILLAVICENCIO Maiglid Andreina
Chercheur non permanent

Localisation Site INSA
Téléphone (33).
Courriel maiglid.moreno-villavicencio@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
SAINT-GIRONS Guillaume
Chercheur

Localisation Site ECL
Téléphone (33).04 72 18 65 97
Courriel guillaume.saint-girons@ec-lyon.fr
Equipe(s) de recherche Hétéroépitaxie et Nanostructures
Plus de détails  
×
NABETH Isabel
IATOS ITA

Localisation Site ECL
Téléphone (33).04 72 18 62 46
Courriel isabel.nabeth@ec-lyon.fr
Equipe(s) de recherche Chimie et Nanobiotechnologies
Plus de détails  
×
CHATEAUX Jean-François
Enseignant chercheur

Localisation Site UCB
Téléphone (33).04 72 43 14 37
Courriel jean-francois.chateaux@univ-lyon1.fr
Equipe(s) de recherche Lab-On-Chip et Instrumentation
Plus de détails  
×
DEMAN Anne-Laure
Enseignant chercheur

Localisation Site UCB
Téléphone (33).04 72 43 14 37
Courriel anne-laure.deman@univ-lyon1.fr
Equipe(s) de recherche Lab-On-Chip et Instrumentation
Plus de détails  
×
FERRIGNO Rosaria
Enseignant chercheur

Localisation Site UCB
Téléphone (33).04 72 43 19 23
Courriel rosaria.ferrigno@univ-lyon1.fr
Equipe(s) de recherche Lab-On-Chip et Instrumentation
Plus de détails  
×
KLEIMANN Pascal
Enseignant chercheur

Localisation Site UCB
Téléphone (33).04 72 44 62 59
Courriel pascal.kleimann@univ-lyon1.fr
Equipe(s) de recherche Lab-On-Chip et Instrumentation
Plus de détails  
×
LU Guo-Neng
Enseignant chercheur

Localisation Site UCB
Téléphone (33).04 72 43 27 39
Courriel guo-neng.lu@univ-lyon1.fr
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
MARTY Olivier
Enseignant chercheur

Localisation Site UCB
Téléphone (33).04 72 43 19 12
Courriel olivier.marty@univ-lyon1.fr
Equipe(s) de recherche Spectroscopies et Nanomatériaux
Plus de détails  
×
MORIN Pierre
Autres

Localisation Site UCB
Téléphone (33).04 72 43 10 24
Courriel pierre.morin@univ-lyon1.fr
Equipe(s) de recherche Lab-On-Chip et Instrumentation
Plus de détails  
×
PITTET Patrick
IATOS ITA

Localisation Site UCB
Téléphone (33).04 72 43 10 24
Courriel patrick.pittet@univ-lyon1.fr
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
QUIQUEREZ Laurent
Enseignant chercheur

Localisation Site UCB
Téléphone (33).04 72 44 81 74
Courriel laurent.quiquerez@univ-lyon1.fr
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
RENAUD Louis
Enseignant chercheur

Localisation Site UCB
Téléphone (33).04 72 44 62 59
Courriel louis.renaud@univ-lyon1.fr
Equipe(s) de recherche Lab-On-Chip et Instrumentation
Plus de détails  
×
ABOUCHI Nacer
Enseignant chercheur

Localisation Site CPE
Téléphone (33).04 72 43 15 24
Courriel abouchi@cpe.fr
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
ALBERTINI David
IATOS ITA

Localisation Site INSA
Téléphone (33).04 72 43 82 67
Courriel david.albertini@insa-lyon.fr
Equipe(s) de recherche Plateforme NanoLyon
Plus de détails  
×
BRUHAT Elise
Chercheur non permanent

Localisation Site INSA
Téléphone (33).04.xx.xx.xx.xx
Courriel elise.bruhat@insa-lyon.fr
Equipe(s) de recherche Photovoltaïque
Plus de détails  
×
BERRY Florian
Chercheur non permanent

Localisation Site ECL
Téléphone (33).04 72 18 60 40
Courriel florian.berry@ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
DUBOIS Florian
Chercheur non permanent

Localisation Site ECL
Téléphone (33).04 72 18 60 40
Courriel florian.dubois@doctorant.ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
APOSTOLUK Aleksandra
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 71 86
Courriel aleksandra.apostoluk@insa-lyon.fr
Equipe(s) de recherche Spectroscopies et Nanomatériaux
Plus de détails  
×
FOLTZER Emmanuelle
IATOS ITA

Localisation Site ECL
Téléphone (33).04 72 18 60 22
Courriel emmanuelle.foltzer@ec-lyon.fr
Equipe(s) de recherche Service administratif et financier
Plus de détails  
×
BABOUX Nicolas
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 82 67
Courriel nicolas.baboux@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
BARBIER Daniel
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 85 47
Courriel daniel.barbier@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
BENYATTOU Taha
Chercheur

Localisation Site INSA
Téléphone (33).04 72 43 71 49
Courriel taha.benyattou@insa-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
BLUET Jean-Marie
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 87 32
Courriel jean-marie.bluet@insa-lyon.fr
Equipe(s) de recherche Spectroscopies et Nanomatériaux
Plus de détails  
×
BREMOND Georges
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 80 66
Courriel georges.bremond@insa-lyon.fr
Equipe(s) de recherche Spectroscopies et Nanomatériaux
Plus de détails  
×
BRU-CHEVALLIER Catherine
Chercheur

Localisation Site INSA,ECL,UCB,CPE
Téléphone (33).04 72 43 89 06
(33).04 72 18 60 67
Courriel catherine.bru-chevallier@insa-lyon.fr
Equipe(s) de recherche Spectroscopies et Nanomatériaux
Plus de détails  
×
CALMON Francis
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 61 59
Courriel francis.calmon@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
BOUSSETTA Lotfi
IATOS ITA

Localisation Site ECL
Téléphone (33).04 72 18 60 46
Courriel lotfi.boussetta@ec-lyon.fr
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
MOALLA Rahma
IATOS ITA

Localisation Site ECL
Téléphone (33).04 72 18
Courriel rahma.moalla@ec-lyon.fr
Equipe(s) de recherche Hétéroépitaxie et Nanostructures
Plus de détails  
×
TAURELLE Marjorie
IATOS ITA

Localisation Site UCB
Téléphone (33).04 72 43 14 33
Courriel marjorie.taurelle@univ-lyon1.fr
Equipe(s) de recherche Service administratif et financier
Plus de détails  
×
FREYERMUTH Hugo
Chercheur non permanent

Localisation Site UCB
Téléphone (33).
Courriel hugo.freyermuth@univ-lyon1.fr
Equipe(s) de recherche Lab-On-Chip et Instrumentation
Plus de détails  
×
TAFRAOUTI Asmae
Chercheur non permanent

Localisation Site UCB
Téléphone (33).
Courriel asmae.tafraouti@univ-lyon1.fr
Equipe(s) de recherche Lab-On-Chip et Instrumentation
Plus de détails  
×
DESCAMPS Lucie
Chercheur non permanent

Localisation Site UCB
Téléphone (33).
Courriel lucie.descamps@univ-lyon1.fr
Equipe(s) de recherche Lab-On-Chip et Instrumentation
Plus de détails  
×
EL JALLAL Said
Chercheur non permanent

Localisation Site ECL
Téléphone (33).04 72 18 60 40
Courriel said.el-jallal@ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
MONTALIBET Amalric
Chercheur non permanent

Localisation Site INSA
Téléphone (33).04 72 43 89 88
Courriel amalric.montalibet@insa-lyon.fr
Equipe(s) de recherche Capteurs Biomédicaux
Plus de détails  
×
VIDAL DE NEGREIROS DA SILVA Thais-Luna
Chercheur non permanent

Localisation Site UCB
Téléphone (33).
Courriel thais-luana.vidal-de-negreiros-da-silva@univ-lyon1.fr
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
BOSIO Alberto
Enseignant chercheur

Localisation Site ECL
Téléphone (33).04 72 18 60 47
Courriel alberto.bosio@ec-lyon.fr
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
DE PINHO FERREIRA Nicolas
Chercheur non permanent

Localisation Site INSA
Téléphone (33).
Courriel nicolas.de-pinho-ferreira@insa-lyon.fr
Equipe(s) de recherche Capteurs Biomédicaux
Plus de détails  
×
BELAROUCI Ali
Chercheur

Localisation Site ECL
Téléphone (33).04 72 18 60 60
Courriel ali.belarouci@ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
FAVE Alain
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 84 64
Courriel alain.fave@insa-lyon.fr
Equipe(s) de recherche Photovoltaïque
Plus de détails  
×
FOURMOND Erwann
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 82 33
Courriel erwann.fourmond@insa-lyon.fr
Equipe(s) de recherche Photovoltaïque
Plus de détails  
×
GALVAN Jean-Marc
Enseignant chercheur

Localisation Site CPE
Téléphone (33).04 72 43 84 93
Courriel galvan@cpe.fr
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
GAUTIER Brice
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 70 03
Courriel brice.gautier@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
GEHIN Claudine
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 89 88
Courriel claudine.gehin@insa-lyon.fr
Equipe(s) de recherche Capteurs Biomédicaux
Plus de détails  
×
GIRARD Philippe
IATOS ITA

Localisation Site INSA
Téléphone (33).04 72 43 61 36
Courriel philippe.girard@insa-lyon.fr
Equipe(s) de recherche Plateforme NanoLyon
Plus de détails  
×
GONTRAND Christian
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 80 67
Courriel christian.gontrand@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
GREGOIRE Joëlle
IATOS ITA

Localisation Site INSA
Téléphone (33).04 72 43 82 66
Courriel joelle.gregoire@insa-lyon.fr
Equipe(s) de recherche Plateforme NanoLyon
Plus de détails  
×
GUILLOT Gérard
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 81 61
Courriel gerard.guillot@insa-lyon.fr
Equipe(s) de recherche Spectroscopies et Nanomatériaux
Plus de détails  
×
JAMOIS Cecile
Chercheur

Localisation Site INSA,ECL
Téléphone (33).04 72 43 71 53
(33).04 72 18 62 49
Courriel cecile.jamois@insa-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
JOLY François
IATOS ITA

Localisation Site CPE
Téléphone (33).04 72 43 13 36
Courriel joly@cpe.fr
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
LE BERRE Martine
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 88 62
Courriel martine.leberre@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
ANDRE Bénédicte
IATOS ITA

Localisation Site INSA,ECL,UCB,CPE
Téléphone (33).04 72 18 60 82
(33).04 72 43 71 89
Courriel benedicte.andre@ec-lyon.fr
Equipe(s) de recherche Service administratif et financier
Plus de détails  
×
LEMITI Mustapha
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 87 31
Courriel mustapha.lemiti@insa-lyon.fr
Equipe(s) de recherche Photovoltaïque
Plus de détails  
×
LYSENKO Vladimir
Chercheur

Localisation Site INSA
Téléphone (33).04 72 43 70 02
Courriel vladimir.lysenko@insa-lyon.fr
Equipe(s) de recherche Spectroscopies et Nanomatériaux
Plus de détails  
×
MALHAIRE Christophe
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 61 34
Courriel christophe.malhaire@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
MILITARU Liviu
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 87 33
Courriel liviu.militaru@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
NYCHYPORUK Tetyana
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 85 40
Courriel tetyana.nychyporuk@insa-lyon.fr
Equipe(s) de recherche Photovoltaïque
Plus de détails  
×
OROBTCHOUK Régis
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 89 07
Courriel regis.orobtchouk@insa-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
FOUQUAT Louise
Chercheur non permanent

Localisation Site ECL
Téléphone (33).04 72 18 60 86
Courriel louise.fouquat@doctorant.ec-lyon.fr
Equipe(s) de recherche Hétéroépitaxie et Nanostructures
Plus de détails  
×
PLOSSU Carole
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 87 33
Courriel carole.plossu@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
PRUDON Gilles
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 63 47
Courriel gilles.prudon@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
NOURY Norbert
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 74 54
Courriel norbert.noury@insa-lyon.fr
Equipe(s) de recherche Capteurs Biomédicaux
Plus de détails  
×
REMAKI Boudjemaa
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 83 27
Courriel boudjemaa.remaki@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
ROBIN Olivier
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 71 14
Courriel olivier.robin@univ-lyon1.fr
Equipe(s) de recherche Capteurs Biomédicaux
Plus de détails  
×
BENAMROUCHE Aziz
IATOS ITA

Localisation Site ECL
Téléphone (33).04 72 18 62 38
Courriel aziz.benamrouche@ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
CANUT Bruno
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 87 34
Courriel bruno.canut@insa-lyon.fr
Equipe(s) de recherche Spectroscopies et Nanomatériaux
Plus de détails  
×
GUENERY Pierre-Vincent
Chercheur non permanent

Localisation Site INSA
Téléphone (33).04 72 43 64 43
Courriel pierre-vincent.guenery@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
SOUIFI Abdelkader
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 89 62
Courriel abdelkader.souifi@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
VERDIER Jacques
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 87 35
Courriel jacques.verdier@insa-lyon.fr
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
PUYOO Etienne
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 73 97
Courriel etienne.puyoo@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
CELLIER Rémy
Enseignant chercheur

Localisation Site CPE
Téléphone (33).04 72 44 84 59
Courriel remy.cellier@cpe.fr
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
LAYOUNI Yasmina
Enseignant chercheur

Localisation Site UCB
Téléphone (33).04 72 43 26 29
Courriel yasmina.layouni@univ-lyon1.fr
Equipe(s) de recherche Lab-On-Chip et Instrumentation
Plus de détails  
×
DUMONT Hervé
Enseignant chercheur

Localisation Site ECL
Téléphone (33).04 72 18 62 47
Courriel herve.dumont@ec-lyon.fr
Equipe(s) de recherche Hétéroépitaxie et Nanostructures
Plus de détails  
×
SUSLEC Annie
IATOS ITA

Localisation Site INSA
Téléphone (33).04 72 43 88 59
Courriel annie.suslec@insa-lyon.fr
Equipe(s) de recherche Service administratif et financier
Plus de détails  
×
BLANC-PELISSIER Danièle
Chercheur

Localisation Site INSA
Téléphone (33).04 72 43 72 86
Courriel daniele.blanc@insa-lyon.fr
Equipe(s) de recherche Photovoltaïque
Plus de détails  
×
LOPEZ Raphaël
IATOS ITA

Localisation Site ECL
Téléphone (33).04 72 18 60 34
Courriel raphael.lopez@ec-lyon.fr
Equipe(s) de recherche
Plus de détails  
×
LAGARDE Virginie
IATOS ITA

Localisation Site INSA
Téléphone (33).04 72 43 83 29
Courriel virginie.lagarde@insa-lyon.fr
Equipe(s) de recherche Service administratif et financier
Plus de détails  
×
DUFAUT Patricia
IATOS ITA

Localisation Site ECL
Téléphone (33).04 72 18 60 57
Courriel patricia.dufaut@ec-lyon.fr
Equipe(s) de recherche Service administratif et financier
Plus de détails  
×
GRILLET Christian
Chercheur

Localisation Site ECL
Téléphone (33).04 72 18 62 53
Courriel christian.grillet@ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
MICHIT Nicolas
Chercheur non permanent

Localisation Site INSA
Téléphone (33).
Courriel nicolas.michit@insa-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
PEYRONNET-DREMIERE Rafaël
Chercheur non permanent

Localisation Site INSA,Autres
Téléphone (33).
Courriel rafael.peyronnet@ipvf.fr
Equipe(s) de recherche Photovoltaïque
Plus de détails  
×
FORNACCIARI Benjamin
IATOS ITA

Localisation Site INSA
Téléphone (33).04 72 43 87 55
Courriel benjamin.fornacciari@insa-lyon.fr
Equipe(s) de recherche Plateforme NanoLyon
Plus de détails  
×
GUILLO-LOHAN Benoît
Chercheur non permanent

Localisation Site INSA
Téléphone (33).04.72.43.74.73
Courriel benoit.guillo-lohan@insa-lyon.fr
Equipe(s) de recherche Photovoltaïque
Plus de détails  
×
MONNIER Virginie
Enseignant chercheur

Localisation Site ECL
Téléphone (33).04 72 18 62 39
Courriel virginie.monnier@ec-lyon.fr
Equipe(s) de recherche Chimie et Nanobiotechnologies
Plus de détails  
×
MAZAURIC Serge
Enseignant chercheur

Localisation Site ECL,CPE
Téléphone (33).
Courriel serge.mazauric@cpe.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
HOANG Ngoc-Vu
Chercheur non permanent

Localisation Site ECL,Autres
Téléphone (33).
Courriel
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
GABRIELIAN-COUTIN Elisabeth Gabrielovna
IATOS ITA

Localisation Site CPE
Téléphone (33).04 72 43 13 35
Courriel secretariat.sn@cpe.fr
Equipe(s) de recherche Service administratif et financier
Plus de détails  
×
URBAIN Mathias
Chercheur non permanent

Localisation Site ECL,Autres
Téléphone (33).
Courriel mathias.urbain@univ-smb.fr
Equipe(s) de recherche Chimie et Nanobiotechnologies
Plus de détails  
×
ZHANG Yu
Chercheur non permanent

Localisation Site INSA
Téléphone (33).
Courriel yu.zhang@insa-lyon.fr
Equipe(s) de recherche Spectroscopies et Nanomatériaux
Plus de détails  
×
GEHIN Thomas
IATOS ITA

Localisation Site ECL
Téléphone (33).04 72 18 62 42
Courriel thomas.gehin@ec-lyon.fr
Equipe(s) de recherche Chimie et Nanobiotechnologies
Plus de détails  
×
PENUELAS José
Enseignant chercheur

Localisation Site ECL
Téléphone (33).04 72 18 62 59
Courriel jose.penuelas@ec-lyon.fr
Equipe(s) de recherche Hétéroépitaxie et Nanostructures
Plus de détails  
×
GUIGUE Lisa
Chercheur non permanent

Localisation Site INSA,Autres
Téléphone (33).
Courriel lisa.guigue@aii-biomedical.com
Equipe(s) de recherche Capteurs Biomédicaux
Plus de détails  
×
JAFFAL Ali
Chercheur non permanent

Localisation Site INSA
Téléphone (33).
Courriel ali.jaffal@insa-lyon.fr
Equipe(s) de recherche Spectroscopies et Nanomatériaux
Plus de détails  
×
GAIGNEBET Nicolas
Chercheur non permanent

Localisation Site INSA
Téléphone (33).
Courriel nicolas.gaignebet@insa-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
DELERUYELLE Damien
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 89 62
Courriel damien.deleruyelle@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
CHEVALIER Céline
IATOS ITA

Localisation Site INSA
Téléphone (33).04 72 43 87 55
Courriel celine.chevalier@insa-lyon.fr
Equipe(s) de recherche Photovoltaïque
Plus de détails  
×
MASENELLI Bruno
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 74 72
Courriel bruno.masenelli@insa-lyon.fr
Equipe(s) de recherche Spectroscopies et Nanomatériaux
Plus de détails  
×
LE BEUX Sébastien
Enseignant chercheur

Localisation Site ECL
Téléphone (33).04 72 18 60 47
Courriel sebastien.le-beux@ec-lyon.fr
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
LABRAK Lioua
Enseignant chercheur

Localisation Site CPE
Téléphone (33).04 72 43 18 29
Courriel lioua.labrak@cpe.fr
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
BACHELET Romain
Chercheur

Localisation Site ECL
Téléphone (33).04 72 18 60 65
Courriel romain.bachelet@ec-lyon.fr
Equipe(s) de recherche Hétéroépitaxie et Nanostructures
Plus de détails  
×
CANTAN Mayeul
Chercheur non permanent

Localisation Site ECL
Téléphone (33).04 72 18 60 86
Courriel mayeul.cantan@ec-lyon.fr
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
MONAT Christelle
Enseignant chercheur

Localisation Site ECL
Téléphone (33).04 72 18 62 49
Courriel christelle.monat@ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
GRIFFART Aurélien
Chercheur non permanent

Localisation Site INSA
Téléphone (33).04 72 43 74 73
Courriel
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
LHUILLIER Jérémy
Chercheur non permanent

Localisation Site ECL
Téléphone (33).04 72 18 60 40
Courriel jeremy.lhuillier@ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
RIGAULT Samuel
Chercheur non permanent

Localisation Site ECL,Autres
Téléphone (33).
Courriel samuel.rigault@st.com
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
CANERO-INFANTE Ingrid
Chercheur

Localisation Site INSA
Téléphone (33).04.72.43.70.03
Courriel ingrid.canero-infante@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
DOYEUX Yvan
IATOS ITA

Localisation Site INSA,UCB
Téléphone (33).04 72 43 70 27
Courriel yvan.doyeux@insa-lyon.fr
Equipe(s) de recherche
Plus de détails  
×
FAIVRE Magalie
Chercheur

Localisation Site UCB
Téléphone (33).04 72 43 19 12
Courriel magalie.faivre@univ-lyon1.fr
Equipe(s) de recherche Lab-On-Chip et Instrumentation
Plus de détails  
×
PERODOU Arthur
Chercheur non permanent

Localisation Site ECL
Téléphone (33).
Courriel arthur.perodou@doctorant.ec-lyon.fr
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
AUDRY-DESCHAMPS Marie-Charlotte
Enseignant chercheur

Localisation Site UCB
Téléphone (33).04 72 43 10 24
Courriel marie-charlotte.deschamps@univ-lyon1.fr
Equipe(s) de recherche Lab-On-Chip et Instrumentation
Plus de détails  
×
YEROMONAHOS Christelle
Enseignant chercheur

Localisation Site ECL
Téléphone (33).04 72 18 62 35
Courriel christelle.yeromonahos@ec-lyon.fr
Equipe(s) de recherche Chimie et Nanobiotechnologies
Plus de détails  
×
BOUAZIZ Jordan
Chercheur non permanent

Localisation Site INSA,ECL
Téléphone (33).04 72 18 60 40
Courriel jordan.bouaziz@insa-lyon.fr
Equipe(s) de recherche Spectroscopies et Nanomatériaux
Plus de détails  
×
MANDORLO Fabien
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 74 77
Courriel fabien.mandorlo@insa-lyon.fr
Equipe(s) de recherche Photovoltaïque
Plus de détails  
×
HO Emmeline
Chercheur non permanent

Localisation Site ECL
Téléphone (33).
Courriel emmeline.ho@ec-lyon.fr
Equipe(s) de recherche Chimie et Nanobiotechnologies
Plus de détails  
×
BENHAMMOU Younès
Chercheur non permanent

Localisation Site INSA
Téléphone (33).
Courriel younes.benhammou@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
VETTORI Marco
Chercheur non permanent

Localisation Site ECL
Téléphone (33).04 72 18 60 86
Courriel marco.vettori@doctorant.ec-lyon.fr
Equipe(s) de recherche Hétéroépitaxie et Nanostructures
Plus de détails  
×
WOOD Thomas
Chercheur non permanent

Localisation Site ECL
Téléphone (33).04 72 18 60 40
Courriel thomas.wood@ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
GALVIN Marie
Chercheur non permanent

Localisation Site ECL
Téléphone (33).04 72 18 61 80
Courriel marie.galvin@doctorant.ec-lyon.fr
Equipe(s) de recherche Chimie et Nanobiotechnologies
Plus de détails  
×
TERRIER Nicolas
IATOS ITA

Localisation Site UCB
Téléphone (33).04 72 44 62 82
Courriel nicolas.terrier@univ-lyon1.fr
Equipe(s) de recherche Plateforme NanoLyon
Plus de détails  
×
CHAUVIN Nicolas
Chercheur

Localisation Site INSA
Téléphone (33).04 72 43 74 65
Courriel nicolas.chauvin@insa-lyon.fr
Equipe(s) de recherche Spectroscopies et Nanomatériaux
Plus de détails  
×
CUEFF Sébastien
Chercheur

Localisation Site ECL
Téléphone (33).04 72 18 60 79
Courriel sebastien.cueff@ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
NGUYEN Hai Son
Enseignant chercheur

Localisation Site ECL
Téléphone (33).04 72 18 60 87
Courriel hai-son.nguyen@ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
DANESCU Alexandre
Enseignant chercheur

Localisation Site ECL
Téléphone (33).04 72 18 60 58
Courriel alexandre.danescu@ec-lyon.fr
Equipe(s) de recherche Hétéroépitaxie et Nanostructures
Plus de détails  
×
BERGUIGA Lotfi
IATOS ITA

Localisation Site INSA
Téléphone (33).04.72.43.75.34
Courriel lotfi.berguiga@insa-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
JOBERT Gabriel
Chercheur non permanent

Localisation Site ECL,Autres
Téléphone (33).
Courriel gabriel.jobert@cea.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
DEL BOSQUE Lucien
Chercheur non permanent

Localisation Site ECL
Téléphone (33).04 72 18 60 86
Courriel
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
AVENAS Quentin
Chercheur non permanent

Localisation Site INSA
Téléphone (33).04.72.43.64.43
Courriel quentin.avenas@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
RAFAEL Rémi
Chercheur non permanent

Localisation Site INSA
Téléphone (33).04.72.43.70.36
Courriel remi.rafael@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
MEKKAOUI Samir
Chercheur non permanent

Localisation Site UCB
Téléphone (33).
Courriel samir.mekkaoui@univ-lyon1.fr
Equipe(s) de recherche Lab-On-Chip et Instrumentation
Plus de détails  
×
CALVO Michele
Chercheur non permanent

Localisation Site INSA,Autres
Téléphone (33).
Courriel michele.calvo@insa-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
CHAVES DE ALBUQUERQUE Tulio
Chercheur non permanent

Localisation Site INSA
Téléphone (33).04 72 43 64 43
Courriel tulio.chaves-de-albuquerque@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
ZHANG Jian
Chercheur non permanent

Localisation Site ECL
Téléphone (33).04 72 18 62 46
Courriel jian.zhang@doctorant.ec-lyon.fr
Equipe(s) de recherche Chimie et Nanobiotechnologies
Plus de détails  
×
YANG Zihua
Chercheur non permanent

Localisation Site ECL
Téléphone (33).
Courriel
Equipe(s) de recherche Chimie et Nanobiotechnologies
Plus de détails  
×
MASSOT Bertrand
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 71 15
Courriel bertrand.massot@insa-lyon.fr
Equipe(s) de recherche Capteurs Biomédicaux
Plus de détails  
×
AYELE Getenet Tesega
Chercheur non permanent

Localisation Site INSA
Téléphone (33).04.xx.xx.xx.xx
Courriel getenet-tesega.ayele@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
GONCALVES Sylvie
IATOS ITA

Localisation Site ECL
Téléphone (33).04 72 18 60 43
Courriel sylvie.goncalves@ec-lyon.fr
Equipe(s) de recherche Service administratif et financier
Plus de détails  
×
CHAREYRE Guillaume
IATOS ITA

Localisation Site INSA,ECL
Téléphone (33).04 72 43 64 72
(33).04 72 18 60 61
Courriel guillaume.chareyre@insa-lyon.fr
Equipe(s) de recherche Plateforme NanoLyon
Plus de détails  
×
CHEN Xiushna
Chercheur non permanent

Localisation Site UCB,Autres
Téléphone (33).
Courriel xchen@ipnl.in2p3.fr
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
DALLEAU Thomas
Chercheur non permanent

Localisation Site UCB,Autres
Téléphone (33).
Courriel thomas.dalleau@st.com
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
SINOBAD Milan
Chercheur non permanent

Localisation Site ECL
Téléphone (33).
Courriel s3524959@student.rmit.edu.au
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
CHATARD Charles
Chercheur non permanent

Localisation Site INSA
Téléphone (33).04.72.43.88.76
Courriel charles.chatard@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
GUIRAL Pierrick
Chercheur non permanent

Localisation Site UCB,Autres
Téléphone (33).
Courriel
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
FERRIER Lydie
Enseignant chercheur

Localisation Site INSA
Téléphone (33).04 72 43 80 66
Courriel lydie.ferrier@insa-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
BRICHE Rémi
Chercheur non permanent

Localisation Site ECL
Téléphone (33).04 72 18 60 40
Courriel remi.briche@ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
DANG Ha My
Chercheur non permanent

Localisation Site ECL
Téléphone (33).04 76 18 60 77
Courriel ha-my-nguyen.dang@ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
VINCENT Daniel
IATOS ITA

Localisation Site INSA
Téléphone (33).04 72 43 87 36
Courriel daniel.vincent@insa-lyon.fr
Equipe(s) de recherche Plateforme NanoLyon
Plus de détails  
×
AMARA Mohamed
Chercheur

Localisation Site INSA
Téléphone (33).04 72 43 76 10
Courriel mohamed.amara@insa-lyon.fr
Equipe(s) de recherche Photovoltaïque
Plus de détails  
×
MAALAOUI Arbi
Chercheur non permanent

Localisation Site ECL
Téléphone (33).04 72 18 61 80
Courriel arbi.maalaoui@doctorant.ec-lyon.fr
Equipe(s) de recherche Chimie et Nanobiotechnologies
Plus de détails  
×
BROTTET Solène
IATOS ITA

Localisation Site INSA
Téléphone (33).04 72 43 82 67
Courriel solene.brottet@insa-lyon.fr
Equipe(s) de recherche Plateforme NanoLyon
Plus de détails  
×
SARELLI Eirini
Chercheur non permanent

Localisation Site ECL,Autres
Téléphone (33).04 72 18 60 77
Courriel eirini.sarelli@ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
LECOT Solène
Chercheur non permanent

Localisation Site ECL
Téléphone (33).04 72 18 62 36
Courriel solene.lecot@ec-lyon.fr
Equipe(s) de recherche Chimie et Nanobiotechnologies
Plus de détails  
×
KEMICHE Malik
Chercheur non permanent

Localisation Site ECL
Téléphone (33).04 72 18 60 40
Courriel malik.kemiche@doctorant.ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
CLAUDE Arthur
IATOS ITA

Localisation Site INSA
Téléphone (33).04 72 43 89 86
Courriel arthur.claude@insa-lyon.fr
Equipe(s) de recherche Capteurs Biomédicaux
Plus de détails  
×
PLANTIER Simon
Chercheur non permanent

Localisation Site INSA,Autres
Téléphone (33).
Courriel
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
BAI Xiaofei
Chercheur non permanent

Localisation Site INSA
Téléphone (33).
Courriel xiaofei.bai@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
TONI Arnaud
Chercheur non permanent

Localisation Site CPE,Autres
Téléphone (33).
Courriel arnaud@enduratechnologies.com
Equipe(s) de recherche Conception de Systèmes Hétérogènes
Plus de détails  
×
BOURAS Mohamed
Chercheur non permanent

Localisation Site ECL
Téléphone (33).04 72 18 60 86
Courriel mohamed-elhachmi.bouras@ec-lyon.fr
Equipe(s) de recherche Hétéroépitaxie et Nanostructures
Plus de détails  
×
EL DIRANI Houssein
Chercheur non permanent

Localisation Site ECL,Autres
Téléphone (33).04 72 18 60 40
Courriel houssein.el-dirani@ec-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
JOHN Jimmy
Chercheur non permanent

Localisation Site INSA,ECL
Téléphone (33).04 72 18 60 40
Courriel jimmy.john@insa-lyon.fr
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
EL-KHATIB Mariam
Chercheur non permanent

Localisation Site INSA
Téléphone (33).04.72.43.74.05
Courriel mariam.el-khatib@insa-lyon.fr
Equipe(s) de recherche Spectroscopies et Nanomatériaux
Plus de détails  
×
ARMAND Rémi
Chercheur non permanent

Localisation Site ECL
Téléphone (33).04 72 18 60 40
Courriel
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
STRUSS Quentin
Chercheur non permanent

Localisation Site INSA
Téléphone (33).
Courriel quentin.struss@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
LI Xiao
Chercheur non permanent

Localisation Site INSA
Téléphone (33).
Courriel xiao.li@insa-lyon.fr
Equipe(s) de recherche Photovoltaïque
Plus de détails  
×
SYNHAIVSKYI Oleksandr
Chercheur non permanent

Localisation Site INSA
Téléphone (33).
Courriel oleksandr.synhaivskyi@ec-lyon.fr
Equipe(s) de recherche Spectroscopies et Nanomatériaux
Plus de détails  
×
GONZALEZ CASAL Sergio
Chercheur non permanent

Localisation Site INSA
Téléphone (33).
Courriel sergio.gonzalez-casal@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
DURSAP Thomas
Chercheur non permanent

Localisation Site ECL
Téléphone (33).04 72 18 60 86
Courriel
Equipe(s) de recherche Hétéroépitaxie et Nanostructures
Plus de détails  
×
MERMET LYAUDOZ Raphaël
Chercheur non permanent

Localisation Site ECL
Téléphone (33).04 72 18 60 55
Courriel
Equipe(s) de recherche Nanophotonique
Plus de détails  
×
ESTEVES Josué
Chercheur non permanent

Localisation Site UCB
Téléphone (33).04 72 43 14 33
Courriel josue.esteves@univ-lyon1.fr
Equipe(s) de recherche Lab-On-Chip et Instrumentation
Plus de détails  
×
PLOURDE Maxime
Chercheur non permanent

Localisation Site INSA
Téléphone (33).
Courriel maxime.plourde@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
ISSARTEL Dylan
Chercheur non permanent

Localisation Site INSA
Téléphone (33).
Courriel dylan.issartel@insa-lyon.fr
Equipe(s) de recherche Dispositifs Electroniques
Plus de détails  
×
NDONG ABESSOLO Jordan Antoine
IATOS ITA

Localisation Site INSA
Téléphone (33).
Courriel jordan
Equipe(s) de recherche Plateforme NanoLyon
Plus de détails  
×
GIGLIA Valentin
Chercheur non permanent

Localisation Site INSA,Autres
Téléphone (33).
Courriel Valentin.GIGLIA@cea.fr
Equipe(s) de recherche Photovoltaïque
Plus de détails  
×

Articles dans des revues internationales ou nationales avec comité de lecture répertoriées par l’AERES ou dans les bases de données internationales (14 publications)

  • Control of the compensating defects in Al-doped and Ga-doped ZnO nanocrystals for MIR plasmonics
    Control of the compensating defects in Al-doped and Ga-doped ZnO nanocrystals for MIR plasmonics
    HAMZA M., BOISRON O., CANUT B., MELINON P., PENUELAS J., GENDRY M., MASENELLI B.,
    In degenerate semiconductor nanoparticles, the tuning range of the plasmon resonance is directly controlled by the electron gas concentration and thus by the dopant activation. Here, we investigate the improvement of the dopant activation in ZnO-based nanocrystals for mid IR plasmonics. For that purpose, we have synthesized Al-doped and Ga-doped ZnO nanocrystals in O-rich and O-poor environments. We show that the free carrier concentration can be doubled for the samples grown in O-poor environment. Accordingly, the plasmon resonance shifts from 5 µm to 3.1 µm. In analogy with previous results from Ga-doped ZnO thin films, we discuss the effect of the possible reduction of the concentration of acceptor-like complexes such as AlZn – VZn and AlZn – Oi (resp. GaZn – VZn and GaZn – Oi) on the activation improvement. Besides, whether long or rapid, thermal annealing does not improve the compensation ratio. Consequently, the control of O content during synthesis remains to most valuable tool to achieve the highest dopant activation in doped ZnO nanocrystals. ×
    [abstract]
    HAMZA M., BOISRON O., CANUT B., MELINON P., PENUELAS J., GENDRY M., MASENELLI B.,
    RCS Advances, 7-28677 (2017)
  • Study of the nucleation and growth of InP nanowires on silicon with gold-indium catalyst
    MAVEL A., CHAUVIN N., REGRENY P., PATRIARCHE G., MASENELLI B., GENDRY M.,
    Journal of Crystal Growth, 458-96-102 (2017)
  • Intense visible emission from ZnO/ PAAX (X = H or Na) nanocomposite synthesized via a simple and scalable sol-gel method
    Intense visible emission from ZnO/ PAAX (X = H or Na) nanocomposite synthesized via a simple and scalable sol-gel method
    ZHU Y., APOSTOLUK A., GAUTIER P., VALETTE A., CORNIER T., BLUET J., MASENELLI-VARLOT K., DANIELE S., MASENELLI B.,
    Intense visible nano-emitters are key objects for many technologies such as single photon source, bio-labels or energy convertors. Chalcogenide nanocrystals have ruled this domain for several decades. However, there is a demand for cheaper and less toxic materials. In this scheme, ZnO nanoparticles have appeared as potential candidates. At the nanoscale, they exhibit crystalline defects which can generate intense visible emission. However, even though photoluminescence quantum yields as high as 60% have been reported, it still remains to get quantum yield of that order of magnitude which remains stable over a long period. In this purpose, we present hybrid ZnO/polyacrylic acid (PAAH) nanocomposites, obtained from the hydrolysis of diethylzinc in presence of PAAH, exhibiting quantum yield systematically larger than 20%. By optimizing the nature and properties of the polymeric acid, the quantum yield is increased up to 70% and remains stable over months. This enhancement is explained by a model based on the hybrid type II heterostructure formed by ZnO/PAAH. The addition of PAAX (X = H or Na) during the hydrolysis of ZnEt2 represents a cost effective method to synthesize scalable amounts of highly luminescent ZnO/PAAX nanocomposites. ×
    [abstract]
    ZHU Y., APOSTOLUK A., GAUTIER P., VALETTE A., CORNIER T., BLUET J., MASENELLI-VARLOT K., DANIELE S., MASENELLI B.,
    Scientific Reports, 6-23557 (2016)
  • Pressure-Dependent Photoluminescence Study of Wurtzite InP Nanowires
    CHAUVIN N., MAVEL A., PATRIARCHE G., MASENELLI B., GENDRY M., MACHON D.,
    Nano Letters, 16-2926-2930 (2016)
  • Room temperature optical response of zinc oxide nanowires synthesized by chemical bath deposition to toluene vapors
    Room temperature optical response of zinc oxide nanowires synthesized by chemical bath deposition to toluene vapors
    APOSTOLUK A., PARIZE R., VILQUIN B., NGUYEN T., CONSONNI V., APPERT E., GAILLARD F., MASENELLI B.,
    Zinc oxide (ZnO) nanowires were synthesized by a simple and cost-effective process, namely chemical bath deposition. X-ray diffraction (XRD) pattern clearly shows that the nanowires are well crystallized in the wurtzite hexagonal structure. Field-emission scanning electron microscope (FESEM) images show the formation of perfectly aligned and organized nanowires, with no defects visible on their surface. The diameter and length of nanowires is 65 and 850 nm, respectively. The room temperature UV-excited photoluminescence spectra show the excitonic band in the UV and a wide emission band centered in the visible. This excitonic and visible emission is studied in the presence of toluene vapors and the results demonstrate the change of the visible photoluminescence of ZnO nanowire array and that the material is able to adsorb toluene. Finally, the mechanism of toluene sensing is discussed. ×
    [abstract]
    APOSTOLUK A., PARIZE R., VILQUIN B., NGUYEN T., CONSONNI V., APPERT E., GAILLARD F., MASENELLI B.,
    Physica Status Solidi (a): Applications and Materials Science, 1 (5)- (2016)
  • Superconductivity in an expanded phase of ZnO: an ab initio study
    Superconductivity in an expanded phase of ZnO: an ab initio study
    HAPIUK D., MARQUES M., MELINON P., BOTTI S., MASENELLI B., FLORES-LIVAS J.,
    It is known that covalent semiconductors become superconducting if conveniently doped with large concentration of impurities. In this article we investigate, using ab initio methods, if the same situation is possible for an ionic, large-band gap semiconductor such as ZnO.Weconcentrate on the cage-like sodalite phase, with very similar electronic and phononic properties as wurtzite ZnO, but allow for endohedral doping of the cages.Wefind that sodalite ZnO becomes superconducting for a variety of dopants, reaching a maximum critical temperature of 7 K. This value is comparable to the transition temperatures of doped silicon clathrates, cubic silicon, and diamond. ×
    [abstract]
    HAPIUK D., MARQUES M., MELINON P., BOTTI S., MASENELLI B., FLORES-LIVAS J.,
    New Journal of Physics, 17-043034 (2015)
  • Tunable mid IR plasmon in GZO nanocrystals
    Tunable mid IR plasmon in GZO nanocrystals
    HAMZA M., BLUET J., MASENELLI-VARLOT K., CANUT B., BOISRON O., MELINON P., MASENELLI B.,
    Degenerate metal oxide nanoparticles are promising systems to expand the significant achievements of plasmonics into the infrared (IR) range. Among the possible candidates, Ga-doped ZnO nanocrystals are particularly suited for mid IR, considering their wide range of possible doping levels and thus of plasmon tuning. In the present work, we report on the tunable mid IR plasmon induced in degenerate Ga-doped ZnO nanocrystals. The nanocrystals are produced by a plasma expansion and exhibit unprotected surfaces. Tuning the Ga concentration allows tuning the localized surface plasmon resonance. Moreover, the plasmon resonance is characterized by a large damping. By comparing the plasmon of nanocrystal assemblies to that of nanoparticles dispersed in an alumina matrix, we investigate the possible origins of such damping. We demonstrate that it partially results from the self-organization of the naked particles and also from intrinsic inhomogeneity of dopants. ×
    [abstract]
    HAMZA M., BLUET J., MASENELLI-VARLOT K., CANUT B., BOISRON O., MELINON P., MASENELLI B.,
    Nanoscale, 7-12030 (2015)
  • Improvement of the solar cell efficiency by the ZnO nanoparticle layer via the down-shifting effect
    Improvement of the solar cell efficiency by the ZnO nanoparticle layer via the down-shifting effect
    APOSTOLUK A., ZHU Y., MASENELLI B., DELAUNAY J., SIBINSKI M., ZNAJDEK K., FOCSA A., KALISZEWSKA I.,
    A down-shifting material can generate one low-energy photon for every one incident high-energy photon. When such a material is placed on the front side of a photovoltaic solar cell, it has the potential to enhance the overall efficiency of the PV device by emitting photons in the spectral range where the solar cell efficiency is higher. This paper examines the application of ZnO nanoparticles as a luminescent down-shifting layer (LDSL) on the Si-based, CIGS and CdTe photovoltaic devices. The experimental results measured on a Si-based photovoltaic cell with a top luminescent down-shifting layer are analyzed. Theoretical solar cells performances were simulated using the SCAPS program. The elaborated electrical and optical models take into account the photoluminescence of the ZnO nanoparticle top layer. The obtained external quantum efficiency (EQE) and I–V characteristics were analyzed in order to estimate the impact of the photoluminescent down-shifting layer on the final efficiency of the Si, CIGS and CdTe solar cells. Contrary to the EQE curves, the I–V characteristics of the CIGS and CdTe solar cells are strongly affected by the presence of the photoluminescent down-shifting layer on their top. ×
    [abstract]
    APOSTOLUK A., ZHU Y., MASENELLI B., DELAUNAY J., SIBINSKI M., ZNAJDEK K., FOCSA A., KALISZEWSKA I.,
    Microelectronic Engineering, 127-51 (2014)
  • Thermodynamics of Nanoparticles: Experimental Protocol Based on a Comprehensive Ginzburg-Landau Interpretation
    Thermodynamics of Nanoparticles: Experimental Protocol Based on a Comprehensive Ginzburg-Landau Interpretation
    MACHON D., PIOT L., HAPIUK D., MASENELLI B., DEMOISSON F., PIOLET R., ARIANE M., MISHRA S., DANIELE S., HOSNI M., JOUINI N., FARHAT S., MELINON P.,
    The effects of surface and interface on the thermodynamics of small particles require a deeper understanding. This step is crucial for the development of models that can be used for decision-making support to design nanomaterials with original properties. On the basis of experimental results for phase transitions in compressed ZnO nanoparticles, we show the limitations of classical thermodynamics approaches (Gibbs and Landau). We develop a new model based on the Ginzburg−Landau theory that requires the consideration of several terms, such as the interaction between nanoparticles, pressure gradients, defect density, and so on. This phenomenological approach sheds light on the discrepancies in the literature as it identifies several possible parameters that should be taken into account to properly describe the transformations. For the sake of clarity and standardization, we propose an experimental protocol that must be followed during high-pressure investigations of nanoparticles in order to obtain coherent, reliable data that can be used by the scientific community. ×
    [abstract]
    MACHON D., PIOT L., HAPIUK D., MASENELLI B., DEMOISSON F., PIOLET R., ARIANE M., MISHRA S., DANIELE S., HOSNI M., JOUINI N., FARHAT S., MELINON P.,
    Nano Letters, 14-269-276 (2014)
  • Extended-Defect-Related Photoluminescence Line at 3.33 eV in Nanostructured ZnO Thin Films
    Extended-Defect-Related Photoluminescence Line at 3.33 eV in Nanostructured ZnO Thin Films
    GUILLEMIN S., CONSONNI V., MASENELLI B., BREMOND G.,
    The 3.33 eV photoluminescence line is investigated in ZnO thin films deposited by dip coating. These films are oriented along the c-axis and exhibit basal-plane stacking faults and random grain boundaries. It is found that the relative intensity of the free exciton peak to the 3.33 eV line decreases as the nanoparticle size is reduced and that the corresponding Huang-Rhys factor is about 0.5. This reveals that excitons bound to extended defects at grain boundaries are involved. Also, post growth annealing strongly affects the photoluminescence spectra. In particular, the 3.31 eV line coming from stacking faults is enhanced at high annealing temperature. (C) 2013 The Japan Society of Applied Physics ×
    [abstract]
    GUILLEMIN S., CONSONNI V., MASENELLI B., BREMOND G.,
    APEX -Applied Physics Expess, 6 (11)-111101 (2013)
  • Investigation of luminescent properties of ZnO nanoparticles for their use as a down-shifting layer on solar cells
    Investigation of luminescent properties of ZnO nanoparticles for their use as a down-shifting layer on solar cells
    APOSTOLUK A., ZHU Y., CANUT B., MASENELLI B., DELAUNAY J., ZNAJDEK K., SIBINSKI M.,
    Commercially available solar cells (e.g. CdS/CdTe, CIGS, c-Si) have a spectrally narrow absorption band when compared to the solar emission spectrum. The UVwavelength response of a solar cell (SC) can be improved by the application of a luminescent down-shifting layer (LDSL) on the SC front side, permitting the conversion of short-wavelength photons to the longer wavelength photons better matching the SC’s absorption spectrum. The ideal down-shifting material must possess a large Stokes shift and have a high luminescence quantum yield. We propose the use of the LDSL containing ZnO nanoparticles of less than 5 nm in diameter able to absorb UV light (λ < 400 nm), where the solar cell spectral response (SR) is low, and re-emitting at longer wavelengths (λ > 425 nm), where the typical SC’s SR increases. ZnO nanoparticles were synthesized by a low energy cluster beam deposition (LECBD) technique and their luminescent properties were studied as a function of the oxygen partial pressure (OPP) applied during the deposition process. The stoichiometry and crystallinity of ZnO nanoparticles can be controlled via the adjustment of the OPP. It was also observed that there exists an optimal value of the oxygen pressure introduced during the LECBD process, which permits to obtain the highest visible photoluminescence emission, necessary for an efficient down-shifting. The yield of the down-shifting in ZnO nanoparticle layer was determined varying the excitation wavelength using the photoluminescence excitation technique. ×
    [abstract]
    APOSTOLUK A., ZHU Y., CANUT B., MASENELLI B., DELAUNAY J., ZNAJDEK K., SIBINSKI M.,
    Physica Status Solidi (c): Current Topics in Solid State Physics, 10(10)-1301-1307 (2013)
  • Oriented Attachment of ZnO Nanocrystals
    Oriented Attachment of ZnO Nanocrystals
    HAPIUK D., MASENELLI B., MASENELLI-VARLOT K., TAINOFF D., BOISRON O., ALBIN C., MELINON P.,
    Self-organization of nanoparticles is a major issue to synthesize mesoscopic structures. Among the possible mechanisms leading to self-organization, the oriented attachment is efficient yet not completely understood. We investigate here the oriented attachment process of ZnO nanocrystals preformed in the gas phase. During the deposition in high vacuum, about 60% of the particles, which are uncapped, form larger crystals through oriented attachment. In the present conditions of deposition no selective direction for the oriented attachment is noticed. To probe the driving force of the oriented attachment, and more specifically the possible influence of the dipolar interaction between particles, we have deposited the same nanocrystals in the presence of a constant electric field. The expected effect was to enhance the fraction of domains resulting from the oriented attachment due to the increased interaction of the particle dipoles with the electric field. The multiscale analytical and statistical analysis (TEM coupled to XRD) shows no significant influence of the electric field on the organization of the particles. We therefore conclude that the dipolar interaction between nanocrystals is not the prominent driving force in the process. Consequently, we argue, in accordance with recent theoretical and experimental investigations, that the surface reduction, possibly driven by Coulombic interaction, may be the major mechanism for the oriented attachment process. ×
    [abstract]
    HAPIUK D., MASENELLI B., MASENELLI-VARLOT K., TAINOFF D., BOISRON O., ALBIN C., MELINON P.,
    Journal of Physics and Chemistry C: Nanomaterials and Interfaces, 117-10220-10227 (2013)
  • YAG:Ce nanoparticle lightsources
    MASENELLI B., MOLLET O., BOISRON O., CANUT B., LEDOUX G., BLUET J.M., MELINON P., DUJARDIN C., HUANT S.,
    Nanotechnology, 24-165703 (2013)
  • ZnO nanoparticles as a luminescent down-shifting layer for photosensitive devices
    ZnO nanoparticles as a luminescent down-shifting layer for photosensitive devices
    ZHU Y., APOSTOLUK A., LIU S., DANIELE S., MASENELLI B.,
    The optical properties of ZnO nanoparticles (NPs) fabricated by three different methods were studied by the UV-excited continuous wave photoluminescence in order to estimate their down-shifting (DS) efficiency. Such a luminescent layer modifies the incident solar radiation via emitting wavelengths better matching the spectral response of the underlying photosensitive device (photodiode), thereby increasing its efficiency. Some of the studied ZnO NPs were subsequently deposited on the front side of commercial silicon photodiodes and the external quantum efficiency (EQE) characteristics of the final devices were measured. Through comparison of the photodiodes EQE characteristics before and after the deposition of the ZnO NPs layer, it was concluded that for the photodiode’s with a low UV sensitivity (about 8%), the ZnO luminescent layer produces a down-shifting effect and the EQE in the UV and blue range improves by 16.6%, while for the photodiodes with a higher initial UV sensitivity (about 50%), the EQE in this range decreases with the ZnO layer thickness, due to the effects competing with DS, like the diminution of the ZnO layer transmittance and an increasing diffusion. ×
    [abstract]
    ZHU Y., APOSTOLUK A., LIU S., DANIELE S., MASENELLI B.,
    Journal of Semiconductors, 34-053005 (2013)

Articles dans des revues avec comité de lecture non répertoriées dans des bases de données internationales (1 publication)

  • nanomatériaux luminescents
    nanomatériaux luminescents
    LEDOUX G., MASENELLI B.,
    Cet article est d’abord consacré à la description des différentes classes de nanomatériaux luminescents, qu’il s’agisse de matériaux semiconducteurs ou d’oxydes métalliques se présentant sous la forme de nanoparticules, de nanofils ou de monofeuillets atomiques. Quelques applications originales, novatrices ou prometteuses de ces nanomatériaux luminescents dans les domaines des technologies de la communication, de l’énergie et de la santé sont ensuite présentées. Quelques rappels, remarques et conseils sont donnés enfin concernant la législation afférente à la dangerosité et à la manipulation de ces nouveaux matériaux. ×
    [abstract]
    LEDOUX G., MASENELLI B.,
    Techniques de l'ingénieur, - (2016)

Conférences données à l’invitation du Comité d’organisation dans un congrès national ou international (20 publications)

  • ZnO nanoparticles as luminophores for LEDs and solar cells
    APOSTOLUK A., ZHU Y., ZHANG Y., LEBAIL N., THERON C., CORNIER T., DANIELE S., MASENELLI B.,
    Couplages à l’échelle nano dans les matériaux pour la santé et l’énergie - applications pour les biocapteurs et le photovoltaïque 13th-15th December 2017 Nailloux, France (2017)
  • Effect of Hydrostatic Pressure on the Band Structure of Wurtzite InP Nanowires
    CHAUVIN N., MAVEL A., PATRIARCHE G., MASENELLI B., GENDRY M., MACHON D.,
    EMN Meeting on Nanowires May 16-19, 2016 Amsterdam, The Netherlands (2016)
  • Optical properties of strained wurtzite InP nanowires
    CHAUVIN N., MAVEL A., PATRIARCHE G., MASENELLI B., GENDRY M., MACHON D.,
    Atelier Nanofils 2016 June 20-22, 2016 Meudon-Bellevue, France (2016)
  • Solution processing of hybrid ZnO quantum dots assembled in mesosphere for light emitting diode applications
    VALETTE A., GAUTIER P., ZHU Y., APOSTOLUK A., MASENELLI B., DANIELE S.,
    EMRS 2016 Spring Meeting, Symposium AA - Solution processing and properties of functional oxide thin films and nanostructures II 2nd-6th May 2016 Lille, France (2016)
  • Solution-processed zinc oxide nanostructures for solar energy and sensing applications
    Solution-processed zinc oxide nanostructures for solar energy and sensing applications
    APOSTOLUK A., ZHU Y., MASENELLI B., VALETTE A., GAUTIER P., LEBAIL N., DANIELE S., CONSONNI V., APPERT E., PARIZE R., DELAUNAY J., ZNAJDEK K., SIBINSKI M.,
    Most of the existing photovoltaic (PV) solar cells are already optimized in terms of their absorption and conversion efficiency, however any strategy that can help to raise their efficiency, even slightly, is welcome, and all the more if it is cheap and does not require any modification of the solar cell fabrication technology. One possibility to increase solar cell’s efficiency is the use of a material that could convert the high energy photons from the sun spectrum, namely UV and blue light, which are otherwise inefficiently absorbed by the amorphous Si, CdTe, CIGS and organic PV cells, and re-emit them as lower energy photons, for which the conversion efficiency of these cells is optimal. This so-called “down-shifting” strategy belongs to the “add-on” technology, as the aim is to fabricate a thin layer of the down-shifting material on top of the existing solar cells and all this at low cost. The criteria which a good down-shifting material needs to fulfill are: having a large Stoke shift (i.e. a discrepancy between the absorption and emission energies) and possessing high photoluminescence quantum yield (PL QY). Furthermore, this material has to be environmental-friendly and cheap. Several attempts were reported in the literature aiming at the fabrication of such a material. For example, CdS and CdSe nanoparticles embedded in polymers or silica have proved to be efficient but not necessarily cheap and non-toxic. However, high PL QY, stable green/yellow emission and easy scale–up process are expected for industrial applications. We study down-shifting materials based on ZnO nanoparticles. ZnO is a low cost, abundant and non-toxic material. It naturally absorbs the blue and UV light thanks to a wide band gap of about 3.37 eV at room temperature. ZnO can also emit visible light, from yellow to red, depending on the nature of the crystalline and surface defects involved in the emission process. Although the nature of these defects is still under debate, it is widely admitted that reducing the size down to the nanoscale enhances the presence of the defects and the luminescence efficiency of ZnO nanostructures in the visible. We present a quick and convenient chemical solution approach to get unique mesospheric self-assembly hybrid ZnO system with intense photoluminescent quantum yield of 40-75 % and stable visible emissions. We develop luminescent layers of ZnO nanoparticles dispersed and embedded in a polymer matrix to be used as down-shifting materials in the structures of solar cells. Our luminescent ZnO layers are fabricated using an easy scale–up process, which is easily adaptable for industrial applications. We will also present the parameters influencing the luminescent efficiency of chemically synthesized ZnO nanoparticles used as down-shifting material. The issue of the optimization of the luminescence EQE, in conjunction with the nano- and mesostructure of the material will also be addressed. We will show how the chemical synthesis parameters influence the ZnO nanoparticle’s EQE and how they can be adjusted to reach EQE as high as 75 %. The possibility to disperse and embed the nanoparticles in polymers (for example PMMA) will also be discussed. Furthermore, the possibility of application of other ZnO nanostructures, namely zinc oxide nanowires, in gas sensors, is presented. These nanowires are fabricated by a simple and low-cost process - chemical bath deposition. They have similar luminescent properties as studied ZnO nanoparticles, i.e. they emit in the UV and in the visible spectral range, thanks to the defects and surface states. Their excitonic and visible emission is studied in the presence of gas vapors and the results demonstrate the change of the visible photoluminescence of ZnO nanowire array and that the material is able to adsorb gases. Finally, the mechanism of gas sensing is discussed. ×
    [abstract]
    APOSTOLUK A., ZHU Y., MASENELLI B., VALETTE A., GAUTIER P., LEBAIL N., DANIELE S., CONSONNI V., APPERT E., PARIZE R., DELAUNAY J., ZNAJDEK K., SIBINSKI M.,
    EMRS 2016 Fall Meeting, symposium M: Materials and devices for energy and environment applications 19th-23rd September 2016 Warsaw, Poland (2016)
  • Zinc oxide nanocomposites for solar energy conversion and LED applications
    Zinc oxide nanocomposites for solar energy conversion and LED applications
    VALETTE A., GAUTIER P., OMAR L., CORNIER T., LEBAIL N., ZHU Y., APOSTOLUK A., MASENELLI B., DANIELE S.,
    An overwhelming economic improvement for white LED and photovoltaic (PV) markets is based on the use of lanthanide-free phosphors that are supposed to convert UV light into visible one, thanks to down-conversion (DS) process. ZnO nanoparticles (NPs) have aroused an increasing interest since they possess a variety of intrinsic defects that provide light emission in the visible range without the introduction of any additional impurity. However, high photoluminescent quantum yield (PLQY), stable green/yellow emission and easy scale–up process are expected for industrial applications. Li-doping and polymer surface modifications of ZnO nanoparticles are mainly used in order to reach high PLQY (>30%) but PLQY decay over few days, uses of sophisticated polymers or multi-step reactions are the main issues for industrial implementation. In collaboration with the company Lotus Synthesis, we developped and patented an industry-capable and cost effective chemical solution process to get unique mesospheric self-assembly hybrid ZnO system with intense (PLQY = 40-75%) and stable visible emissions. We also demonstrate that the use of mixture of commercial polyacrylic acid-based polymers can provide large scale amounts of ZnO NPs clear water suspensions that can be dried and dispersed again in water without compromising the functional performance (e.g. transparency and PLQY) of the final DS layer. We will then address the effects of the ZnO NPs surface functionalization - such as nature, molecular weight, concentration, ratio of the PAA-based polymers and self-assembly process- on the enhancement of the efficiency of DS hybrid materials for LED and PV markets. ×
    [abstract]
    VALETTE A., GAUTIER P., OMAR L., CORNIER T., LEBAIL N., ZHU Y., APOSTOLUK A., MASENELLI B., DANIELE S.,
    EMRS 2016 Fall Meeting, symposium L: Materials and devices for energy and environment applications 19th-23rd September 2016 Warsaw, Poland (2016)
  • ZnO cluster assembled film with low defect concentration: towards ultra sensitive sensor
    MELINON P., MASENELLI B., APOSTOLUK A., DELAUNAY J., VIGNOLI S., TAINOFF D., MACHON D.,
    NANO 2016 - XIII International Conference on Nanostructured Materials 7th-12th August 2016 Quebec, Canada (2016)
  • ZnO Nanoparticles: from intense visible emission to Mid IR plasmon
    ZnO Nanoparticles: from intense visible emission to Mid IR plasmon
    MASENELLI B., HAMZA M., ZHU Y., APOSTOLUK A., MASENELLI-VARLOT K., DANIELE S., MELINON P.,
    The size reduction in ZnO nanoparticles increases the presence of specific crystalline defects (Zn vacancies and O interstitials). These defects can behave as efficient light-emitters. However, the stability in time of their high quantum yield (PL QY) is still challenging. We first show that by controlling the synthesis ambient in the hydrolysis process of ZnEt2 by the addition of some weak polymeric acid (polyacrilic acid) we can design hybrid organic/inorganic ZnO based nanomaterials which exhibit stable PL QY up to 70% in the green range of the visible spectrum. By carefully controlling the nature and size of the polymeric chains, we are able to synthesize scalable amount of visible light emitters competing with the well-established chalcogenide nano-emitters. ZnO can also be doped by Al or Ga at large concentration (up to few percents). The resulting semiconductor being degenerate, it possesses a free electron gas which exhibits a plasmon resonance. Since the plasmon resonance is related to the electron concentration, the plasmon can be tuned. These materials are promising candidates to transfer the outstanding results of plasmonics achieved with noble metals in the visible range to the IR range. Therefore, in the second part of this contribution, we will present how the dopant concentration can allow tuning the LSPR of nanoparticles in the mid IR range. We will show that degenerate metal oxide nanoparticles, and in particular Ga or Al doped ZnO nanoparticles, are outstanding materials for mid IR plasmonics. ×
    [abstract]
    MASENELLI B., HAMZA M., ZHU Y., APOSTOLUK A., MASENELLI-VARLOT K., DANIELE S., MELINON P.,
    BIT 6th annual world congress on Nano science and technology 26-28 octobre 2016 Singapour (2016)
  • ZnO nanoparticles: from intense visible emission to Mid IR plasmon
    ZnO nanoparticles: from intense visible emission to Mid IR plasmon
    MASENELLI B., HAMZA M., ZHU Y., APOSTOLUK A., MASENELLI-VARLOT K., DANIELE S., MELINON P.,
    As far as optics is concerned, ZnO nanostructures have first been considered as potential interesting UV emitters to compete with GaN ones. Because of the difficulty to achieve stable p-doping in ZnO, other optical properties than the large bandgap (3.4 eV) and large UV exciton binding energy (~60 meV) have been harnessed. First, the size reduction in nanoparticles and the concomitant predominance of the surface increase the presence of specific crystalline defects (Zn vacancies and O interstitials). These defects happen to behave as very efficient light-emitters. Their emission can be so intense as to lead to single photon emission [ ]. However, the stability in time of their high photoluminescent quantum yield (PL QY) still remains a challenge. In the present contribution, we first show that by controlling the synthesis ambient in the hydrolysis process of diethyl zinc by the addition of some weak polymeric acid (PAA, polyacrilic acid) we can design hybrid organic/inorganic ZnO based nanomaterials which exhibit stable PL QY up to 70% in the green range of the visible spectrum. Therefore, by carefully controlling the nature and size of the polymeric chains, we are able to synthesize scalable amount of visible light emitters that can compete with the well-established chalcogenide nano-emitters. Second, ZnO can be doped by Al (AZO) or Ga (GZO) at large concentration (up to a few percent). This leads to an alloy which behaves as a good TCO (transparent conductive oxide). This property is currently exploited to design transparent electrodes for photovoltaic cells for instance. The resulting semiconductor being degenerate, it possesses a free electron gas which can sustain a plasmon resonance. The major interest is the tunability of the electron gas concentration through the tuning of the dopant (Al or Ga) concentration. Since the plasmon resonance frequency is proportional to the square root of the electron gas concentration, these materials are promising candidates to transfer the outstanding results of plasmonics achieved with noble metals (Ag and Au) in the visible range to the IR range (in the IR range, the noble metals do not allow the tuning of their electron gas concentration and exhibit very large losses). In particular, since most of the chemical molecules have vibration frequencies in the mid IR range, their resonant coupling with localized surface plasmons (LSPR) is particularly interesting to design highly sensitive gas sensors. Therefore, in the second part of this contribution, we will present how the dopant concentration (Al or Ga) can allow tuning the LSPR of nanoparticles in the mid IR range. Solutions to current issues of the LSPR damping and broadening will be addressed in relation with the dopant localization and chemical state. We will show that degenerate metal oxide nanoparticles, and in particular Ga or Al doped ZnO nanoparticles, are outstanding materials for mid IR plasmonics. ×
    [abstract]
    MASENELLI B., HAMZA M., ZHU Y., APOSTOLUK A., MASENELLI-VARLOT K., DANIELE S., MELINON P.,
    EMP16 - International Conference on Energy, Materials and Photonics 10th-13th July 2016 Troyes (2016)
  • III-V nanowires on silicon for light emission in the telecom band
    CHAUVIN N., ANUFRIEV R., MAVEL A., BARAKAT J., REGRENY P., PATRIARCHE G., MASENELLI B., GENDRY M.,
    IMMEA-2015 September 9-12, 2015 Marrakech, Morocco (2015)
  • Optical properties of wurtzite InP nanowires under hydrostatic pressure
    CHAUVIN N., MAVEL A., MASENELLI B., REGRENY P., GENDRY M., MACHON D.,
    5th Korean-German-French workshop on nanophotonics December  13-16, 2015 Würzburg, Germany (2015)
  • Spectroscopic study of ZnO nanostructures with intentionally introduced defects for photovoltaic and gas detector applications
    Spectroscopic study of ZnO nanostructures with intentionally introduced defects for photovoltaic and gas detector applications
    APOSTOLUK A., ZHU Y., MASENELLI B., NGUYEN T., DELAUNAY J., VALETTE A., GAUTIER P., DANIELE S.,
    In the present communication, we propose the application of ZnO nanoparticles as down-shifters for the enhancement of the solar cell’s spectral response. Nanoparticles permit to achieve a high concentration of the intermediate energy levels in the bandgap, necessary for an efficient energy down-shifting and at the same time, they can act as an antireflective layer. We first show that the synthesis conditions can be used to control and enhance the visible luminescence of ZnO NPs and even achieve high quantum photoluminescent yield. The subsequent use of these nanoparticles as a down-shifting material for photovoltaic cells is proposed. ×
    [abstract]
    APOSTOLUK A., ZHU Y., MASENELLI B., NGUYEN T., DELAUNAY J., VALETTE A., GAUTIER P., DANIELE S.,
    MICROTHERM-SEMTHERM 2015, Microtechnology and thermal problems in electronics, Smart engineering of new materials 22nd-25th June 2015 Lodz, Poland (2015)
  • ZnO cluster assembled film with low defect concentration: towards ultra-low power sensors
    ZnO cluster assembled film with low defect concentration: towards ultra-low power sensors
    MELINON P., MACHON D., DANIELE S., MASENELLI B.,
    Small, low power sensors and actuators are vital for systems of all kinds to interact with their environment. Interest in gas sensing has been prompted from the need of monitoring our environment and particularly hazardous substances having negative effects on the environment and human welfare. Chemical sensors have been used extensively for the detection of hazardous pollutant gases, combustible gases and organic vapors. In this way, past few decades have found widespread applications for semiconducting metal nano oxides as solid-state gas sensors. The operating principle is based from the dependence of the conductivity through physisorption with the composition and the concentration of the surrounded atmosphere. Among them ZnO is very popular due to its superior reactivity, its non-toxicity, its chemical robustness, a large bandgap and a low synthesis price. However, the natural and often uncontrolled n doping, is a strong barrier for reproducibility results. We report a state of the art ZnO cluster assembled film nearly defect free which exhibit a huge and reproducible reactivity in a limited range of temperature. This perfect control of the defects is the key point for gas sensor upgrading with respect to the sensitivity, the selectivity, the reproducibility, the linearity and the life time. It takes an innovative look for reducing both size and power consumption allowing the integration in complex chips. ×
    [abstract]
    MELINON P., MACHON D., DANIELE S., MASENELLI B.,
    BIT Congress 23-25 mars 2015 Busan, Corée (2015)
  • Defects and P dopants engineering in ZnO nanoparticles and nanowires
    MASENELLI B.,
    ICSEM 2014 6-10 janvier 2014 Greater Noida (New Delhi India) (2014)
  • Nanocharacterization of materials for energy
    Nanocharacterization of materials for energy
    MASENELLI B.,
    The characterization of materials for energy is not in essence different from the characterization of materials developed for others issues. Nevertheless, as for other domains of applications, the optimization of materials for energy requires the understanding of processes which occur at the nanoscale. These can be chemical processes (interaction of ions and nanostructures in Li batteries, in photocatalytic systems…), electrical processes (movements and trapping of charges at atomic sites in NEMS and mechanical energy harvesters), optical processes (light generation or conversion in LEDs or PV cells based on nanostructures) or even thermal processes (flux control at atomic interfaces). This need can now be satisfied thanks to the recent developments of usual characterization techniques. In the presentation, we will review some of the most recent achievements regarding characterization at the nanoscale of materials designed for energy purposes. The focus will be made on the contribution specific to the nanoscale. In order to address the relevant issues, the presentation will be organized according to the physical and chemical properties to probe, namely structural, chemical, electronic, optical and thermal phenomena ×
    [abstract]
    MASENELLI B.,
    MAT4ENERGY 16- 18 juin Grenoble (2014)
  • Spectroscopic studies of intentionally introduced defects and p dopants in ZnO nanoparticles and nanowires for photovoltaic applications
    Spectroscopic studies of intentionally introduced defects and p dopants in ZnO nanoparticles and nanowires for photovoltaic applications
    APOSTOLUK A., ZHU Y., MASENELLI B., DANIELE S., DELAUNAY J.,
    Third generation solar cells are based on low cost fabrication concepts which should potentially permit to overcome the Shockley-Queisser limit, estimated at 33.7 % efficiency for a p-n junction made of a material having a bandgap of 1.1 eV (e.g. Si). Nevertheless, current single crystalline silicon SCs deliver a conversion efficiency of only 27.6 %. This is limited by the optical absorption, surface reflection, carrier transport and carrier collection. One of the most promising concepts for 3rd generation solar cells is based on the application of low-dimensional structures. It permits an easy bandgap engineering of the photoactive material and addressing the issue of the low efficiency of solar cells in the UV spectral domain. For example, the UV-wavelength response of an Si-based solar cell is low due to the front surface recombination of the hot photogenerated carriers. This can be improved by the application of a photoluminescent spectral converter which converts photons of inefficient frequencies into longer wavelength photons better matching the solar cell’s active layer absorption spectrum, via a so called energy down-shifting (DS) process. The ideal down-shifting material must possess a large Stokes shift and have a high luminescence quantum yield. In the present communication, we propose the application of the semiconducting nanoparticles (NPs) as down-shifters for the enhancement of the SC’s spectral response. Nanoparticles permit to achieve a high concentration of the intermediate energy levels in the bandgap, necessary for an efficient DS and at the same time, they can act as an antireflective layer. Moreover, ZnO specifically turns out be a very attractive material for DS applications, as it is non-harmful and abundant, benefits from cheap and easy fabrication methods, has a wide bandgap (3.4 eV) and a higher absorption coefficient than other wide bandgap materials such as GaN. We first show that the synthesis conditions (hydrolysis or co-precipitation), can be used to control and enhance the visible luminescence of ZnO NPs and even achieve high quantum yield. Our study particularly emphasizes the role of specific elements (Li) or ligands (polyacrylic acid coating in the core-shell structure) on the control of the quantum efficiency. The subsequent use of these nanoparticles as down-shifting material for photovoltaic cells is demonstrated. Second, taking advantage of the high surface-to-volume ratio of nanowires, we propose a new strategy for achieving p-doping in ZnO nanostructures. It relies on the dopant diffusion from a surrounding matrix into MOCVD grown nanowires. The p-dopants are identified by temperature dependent photoluminescence and cathodoluminescence and are shown to be homogeneously distributed and stable among the nanowires. This paves the way to the fabrication of ZnO p-n homojunctions either in the radial or axial geometry. ×
    [abstract]
    APOSTOLUK A., ZHU Y., MASENELLI B., DANIELE S., DELAUNAY J.,
    IUMRS-ICEM 2014 (International Union of Materials Research Societes - International Conference on Electronic Materials) 10th-14th June 2014 Taipei, Taiwan (2014)
  • ZnO nanoparticles as down - shifting material
    ZnO nanoparticles as down - shifting material
    MASENELLI B., APOSTOLUK A., ZHU Y., COSNIER T., GAUTIER P., DANIELE S.,
    Most of the existing solar conversion plants are equipped with Si based PV cells. This technology will most certainly prevail for the coming decades. Therefore, any strategy that can help to increase the conversion efficiency, even slightly, is welcome; and all the more if it is cost-effective. One such possibility is to use a material that could convert the high energy radiation from the sun spectrum, namely UV and blue light, which are otherwise inefficiently absorbed by the Si based PV cells, and re-emit them at lower energy for which the conversion efficiency of the Si cell is optimum. The so-called “down-shifting” strategy belongs to the “add-on” technology. In technology, the aim is to fabricate a thin layer of the down-shifting material that could be added on top of existing cells at low cost. The criteria to fulfill are to design a material with as large a Stoke shift (discrepancy between absorption and emission energies) as possible with high luminescence external quantum efficiency (EQE). Furthermore, the material has to be environmental-friendly and cheap. Several attempts have been made to design such a material. CdS and CdSe nanoparticles embedded in polymers or silica have proved to be efficient but not necessarily cheap and environmental-friendly. Si nanoparticles in silica have been an alternative to chalcogenides. At the INL (institute of nanotechnology of Lyon), we develop down-shifting materials based on ZnO nanoparticles. ZnO is a low cost abundant and non-toxic material. It naturally absorbs the blue and UV radiations thanks to a band gap of about 3.37 eV at room temperature. ZnO can also emit visible light, from yellow to red, depending on the nature of the crystalline defects involved in the process. Even though the nature of these defects is still partially debated, it is established that reducing the size down to the nanoscale enhances their presence and efficiency. Therefore, we base our strategy on ZnO nanoparticles dispersed and embedded in a polymer matrix. In the present work, we will examine the efficiency of ZnO nanoparticles as down-shifting material. We will address the prominent issue of optimizing the EQE, in conjunction with the nano and mesotruscture. We will show how the chemical synthesis process affects the EQE and how we can use it to reach EQE larger than 20%. The possibility to disperse and embed the particles and polymers (PMMA for instance) will be discussed. ×
    [abstract]
    MASENELLI B., APOSTOLUK A., ZHU Y., COSNIER T., GAUTIER P., DANIELE S.,
    2014 Korea Institute of Science and Technology - the Institute of Multidisciplinary Convergence of Matter (KIST-IMCM) Symposium 8th-10th May 2014 Seoul, Korea (2014)
  • Growth of semiconducting core / functional oxide shell nanowires
    PENUELAS J., BOUDAA F., BACHELET R., VILQUIN B., MASENELLI B., BLANCHARD N., ARDILA G., ANDREAZZA P., ANDREAZZA C.,
    PIEZONEMS November, 14, 2013 Grenoble, France (2013)
  • Optical spectroscopy of intentionally introduced defects and p dopants in ZnO nanoparticles and nanowires
    Optical spectroscopy of intentionally introduced defects and p dopants in ZnO nanoparticles and nanowires
    APOSTOLUK A., ZHU Y., MASENELLI B.,
    Working at the nanoscale presents some advantages and drawbacks when it comes to the optical properties of ZnO devices. It is well known that reducing the size often leads to the unintentional introduction of crystalline defects or impurities in nanoparticles and nanowires, near the surface, which in turn deteriorates the luminescence. In the present communication, we first show that according to the synthesis conditions (hydrolysis or co-precipitation), we can control and enhance the visible luminescence of ZnO nanoparticles and even achieve high quantum yield. Our study particularly emphasizes the role of specific elements (Li) or ligands (PAA coating in core-shell structure) on the control of the quantum efficiency. The subsequent use of these nanoparticles as down-shifting materials for photovoltaic cells is demonstrated. Second, still taking advantage of the high surface/volume ratio of nano-objects, we propose a new strategy for achieving P-doping. It relies on the dopant diffusion from a surrounding matrix into MOCVD grown nanowires. The P-dopants are identified by temperature dependent photoluminescence and cathodoluminescence and are shown to be homogeneously distributed and stable among the wires. This paves the way to the fabrication of ZnO P-N homojunctions either in the radial or axial geometry. ×
    [abstract]
    APOSTOLUK A., ZHU Y., MASENELLI B.,
    EMRS 2013 Fall Meeting 16th-20th September 2013 Warsaw, Poland (2013)
  • Thermodynamics in nanoparticles: what did you expect with pressure: the case of ZnO phase transition
    MELINON P., MACHON D., PIOT L., HAPIUK D., MASENELLI B., DEMOISSON F., PIOLET R., ARIANE M., MISHRA S., DANIELE S., HOSNI M., JOUINI N., FARHAT S.,
    5th Jekyll Island Conference April 21 – 25, 2013 Jekyll Island Club hotel (2013)

Communications avec actes dans un congrès international (2 publications)

  • Calculs DFT pour le dopage de type p endohédrique dans ZnO
    HAPIUK D., MELINON P., MASENELLI B.,
    E-MRS fall meeting 19-22 septembre 2013 Varsovie (2013)
  • Oriented attachment of ZnO nanoparticles
    HAPIUK D., MASENELLI B., MASENELLI-VARLOT K., TAINOFF D., BOISRON O., ALBIN C., MELINON P.,
    E-MRS fall meeting 19-22 septembre 2013 Varsovie (2013)

Communications avec actes dans un congrès national (1 publication)

  • ZnO nanoparticle layers as down-shifting converters for the thin-film photovoltaic structures
    ZNAJDEK K., SIBINSKI M., LISIK Z., APOSTOLUK A., ZHU Y., MASENELLI B.,
    XV KKE 2016 - XV Krajowa Konferencja Elektroniki, XV Polish National Electronics Conference 6th-10th June 2016 Darlowko Wschodnie, Poland (2016)

Communications orales sans actes dans un congrès international ou national (15 publications)

  • Solution processing of hybrid ZnO nanophosphors assembled in mesosphere for LED applications
    DANIELE S., LAMA O., LEBAIL N., CORNIER T., ZHANG Y., APOSTOLUK A., MASENELLI B., CHADEYRON G., POTDEVIN A.,
    Réunion du groupe français des luminophores GFL 2017 13th November 2017 Lyon, France (2017)
  • Zinc oxide nanoparticles with intentionally introduced defects for applications in white LEDs
    APOSTOLUK A., ZHANG Y., LEBAIL N., CORNIER T., DANIELE S., MASENELLI B.,
    C'NANO 2017 5th-7th December 2017 Lyon, France (2017)
  • ZnO and its doped structures for the applications in LEDs, solar cells and gas sensors
    APOSTOLUK A., ZHANG Y., MASENELLI B., DANIELE S., LEBAIL N., CORNIER T.,
    SEMTHERM 2017 - Smart Engineering of New Materials and MICROTHERM 2017 - Microtechnology and Thermal Problems in Microelectronics 26th-30th June 2017 Lodz, Poland (2017)
  • ZnO nanoparticles as luminophores for LEDs and solar cells
    APOSTOLUK A., ZHANG Y., LEBAIL N., THERON C., CORNIER T., DANIELE S., MASENELLI B.,
    Réunion du groupe français des luminophores 13th November 2017 Lyon, France (2017)
  • doped ZnO nano-structures for M-IR plasmonics
    HAMZA M., BLUET J., MASENELLI-VARLOT K., CANUT B., BUGNET M., BRANSON O., MELINON P., MASENELLI B.,
    EMRS 19-22 septembre 2016 Varsovie (Pologne) (2016)
  • Hybrid ZnO mesospheres for white LED and photovoltaic markets
    VALETTE A., GAUTIER P., ZHU Y., APOSTOLUK A., MASENELLI B., DANIELE S.,
    EMRS 2016 Spring Meeting, Symposium A - Hybrid materials: from the laboratory to the market 2nd-6th May 2016 Lille, France (2016)
  • Hybrid ZnO nanocolloids for white LED and photovoltaic markets
    VALETTE A., GAUTIER P., ZHU Y., APOSTOLUK A., MASENELLI B., DANIELE S.,
    EMRS 2016 Spring Meeting, symposium J - Established and emerging nanocolloids: from synthesis & characterization to applications II 2nd-6th May 2016 Lille, France (2016)
  • InAs/InP quantum dot nanowires with abrupt interfaces grown on silicon
    MAVEL A., CHAUVIN N., REGRENY P., PATRIARCHE G., MASENELLI B., GENDRY M.,
    MBE 2016 - 19th International Conference on Molecular Beam Epitaxy September 4-9, 2016 Montpellier, France (2016)
  • The abstract Zinc oxide nanostructures with intentionally introduced defects as material for solar energy and sensing applications
    The abstract Zinc oxide nanostructures with intentionally introduced defects as material for solar energy and sensing applications
    APOSTOLUK A., ZHU Y., MASENELLI B., VALETTE A., GAUTIER P., LEBAIL N., DANIELE S., CONSONNI V., APPERT E., PARIZE R., DELAUNAY J., ZNAJDEK K., SIBINSKI M.,
    Most of the existing photovoltaic (PV) solar cells are already optimized in terms of their absorption and conversion efficiency, however any strategy that can help to raise their efficiency is welcome, especially if it is cheap and does not require any modification of the solar cell fabrication technology. One possibility to increase solar cell's efficiency is the use of a material that could convert the high energy photons from the sun spectrum, namely UV and blue light, which are otherwise inefficiently absorbed by the amorphous Si, CdTe, CIGS and organic PV cells, and re-emit them as lower energy photons, for which the conversion efficiency of these cells is optimal. This so-called “down-shifting”. We study down-shifting materials based on ZnO nanoparticles. It naturally absorbs the blue and UV light thanks to a wide band gap of about 3.37 eV and it can also emit visible light, from yellow to red, depending on the nature of the crystalline and surface defects involved in the emission process. We present a quick and convenient chemical solution approach to get unique mesospheric self-assembly hybrid ZnO system with intense photoluminescent quantum yield of 40-75 % and stable visible emissions. Furthermore, the possibility of application of other ZnO nanostructures, namely zinc oxide nanowires, in gas sensors, is presented. Their excitonic and visible emission is studied in the presence of gas vapors and the results demonstrate the change of the visible photoluminescence of ZnO nanowire array and that the material is able to adsorb gases. ×
    [abstract]
    APOSTOLUK A., ZHU Y., MASENELLI B., VALETTE A., GAUTIER P., LEBAIL N., DANIELE S., CONSONNI V., APPERT E., PARIZE R., DELAUNAY J., ZNAJDEK K., SIBINSKI M.,
    EMRS 2016 Fall Meeting, symposium Z: Functional oxides - synthesis, structure, properties and applications 19th-23rd September 2016 Warsaw, Poland (2016)
  • ZnO nanostructures for Mid-IR plasmonics
    HAMZA M., BLUET J., MASENELLI-VARLOT K., CANUT B., BOISRON O., MELINON P., MASENELLI B.,
    Nanoplasm 13-17 juin 2016 Cetraro (Italie) (2016)
  • Study of ZnO nanostructures with intentionally introduced defects for photovoltaics and optical gas sensing
    Study of ZnO nanostructures with intentionally introduced defects for photovoltaics and optical gas sensing
    APOSTOLUK A., ZHU Y., NGUYEN T., MASENELLI B., VALETTE A., GAUTIER P., DANIELE S., DELAUNAY J., APPERT E., CONSONNI V.,
    In the present communication, we propose the application of the wide bandgap semiconductor nanoparticles (NPs) as energy converters for the enhancement of the spectral response of solar cells. Nanoparticles permit to achieve a high concentration of the intermediate energy levels in the bandgap, necessary for an efficient down-shifting (a variant of down-conversion process, in which one high energy photon is converted into one lower-energy photon) and at the same time, they can act as an antireflective layer [1]. Wide band gap semiconductors, such as ZnO, absorb efficiently the UV light in the spectral zone where the efficiency of most solar cells (CdTe, CIGS, amorphous Si) is low and convert it into the visible light at the wavelengths where the solar cell spectral response is higher. Moreover, ZnO specifically turns out be a very attractive material for down-shifting applications, as it is non-harmful and abundant, benefits from cheap and easy fabrication methods, has a wide bandgap (3.4 eV) and a higher absorption coefficient than other wide bandgap materials such as GaN. We first show that the synthesis conditions (hydrolysis or co-precipitation), can be used to control and enhance the visible luminescence of ZnO NPs in order to achieve high quantum photoluminescent yield. The subsequent use of these nanoparticles as a down-shifting material for photovoltaic cells is demonstrated [2]. This visible defect luminescence in ZnO nanostructures and more precisely nanowires turns out to be sensitive to some toxic gases can be applied in the optical gas sensing, especially in the explosive environment, where the resistive gas sensors cannot be applied. References: [1] A. Apostoluk, Y. Zhu, B. Masenelli, J.-J. Delaunay, M. Sibiński, K. Znajdek, A. Focsa, I. Kaliszewska, Improvement of the solar cell efficiency by the ZnO nanoparticle layer via the down-shifting effect, Microelectronic Engineering 127, pp. 51–56, 2014, DOI:10.1016/j.mee.2014.04.025 [2] A. Apostoluk, Y. Zhu, B. Canut, B. Masenelli, J.-J. Delaunay, K. Znajdek and M. Sibiński, Investigation of luminescent properties of ZnO nanoparticles for their use as a down-shifting layer on solar cells, Phys. Status Solidi C 10 (10), 1301–1307, 2013; DOI: 10.1002/pssc.201200950 ×
    [abstract]
    APOSTOLUK A., ZHU Y., NGUYEN T., MASENELLI B., VALETTE A., GAUTIER P., DANIELE S., DELAUNAY J., APPERT E., CONSONNI V.,
    Swiss-Japan workshop 2015 - International workshop on nanoscale electron-photon interactions via energy dissipation and fluctuation 7th-9th September 2015 Les Diablerets, Switzerland (2015)
  • Core-shell nanowire array on a film for hydrogen generation by photocatalytic water splitting with sunlight
    ZHONG M., SATO Y., APOSTOLUK A., MASENELLI B., IKUHARA Y., DELAUNAY J.,
    IUMRS-ICEM 2014 (International Union of Materials Research Societies - International Conference on Electronic Materials) 10th-14th June 2014 Taipei, Taiwan (2014)
  • Improvement of silicon solar cell quantum efficiency by ZnO nanoparticles down shifting effect
    APOSTOLUK A., ZHU Y., MASENELLI B., DELAUNAY J., SIBINSKI M., ZNAJDEK K., FOCSA A.,
    MICROTHERM 2013 - Microtechnology and thermal problems in electronics 25th-28th June 2013 Lodz, Poland (2013)
  • Improvement of the quantum efficiency of solar cells by a luminescent layer of ZnO nanoparticles
    Improvement of the quantum efficiency of solar cells by a luminescent layer of ZnO nanoparticles
    APOSTOLUK A., ZHU Y., MASENELLI B., DELAUNAY J., SIBINSKI M., ZNAJDEK K., FOCSA A.,
    Improvement of the quantum efficiency of solar cells by a luminescent layer of ZnO nanoparticles A. Apostoluk1*, Y. Zhu1, B. Masenelli1, J.-J. Delaunay2, M. Sibiński3, K. Znajdek3, A. Focsa1 1Lyon Institute of Nanotechnology (INL), CNRS UMR 5270, INSA Lyon, Villeurbanne, France 2School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan 3 Department of Optoelectronics and Semiconductor Devices, Lodz University of Technology, Lodz, Poland Third generation solar cells are based on low cost fabrication concepts which should potentially permit to overcome the Shockley-Queisser limit [1]. It is estimated at 33.7 % efficiency for a p-n junction made of a material having a bandgap of 1.1 eV (like Si). Nevertheless, current single crystalline silicon SCs have a conversion efficiency of only 27.6 % [2]. The short wavelength (UV) response of a standard Si solar cell is low due to the front surface recombination of the hot photogenerated carriers. This can be improved by the application of a luminescent down-shifting layer (LDSL) placed on the top of a solar cell, permitting the conversion of short-wavelength photons to the longer wavelength photons better matching the SC’s active layer absorption spectrum (so called energy down-shifting, DS). The photoluminescent down-shifting uses the optical emission through intermediate bandgap defect levels in order to convert efficiently high energy (UV) photons into lower energy ones. The ideal down-shifting material must possess a large Stokes shift and have a high luminescence quantum yield. Semiconducting nanoparticles (NPs) audience to be very interesting for DS applications, as they permit to achieve a high concentration of the intermediate energy levels in the bandgap, necessary for efficient DS and at the same time, they can act as an antireflective layer [4]. In this view, ZnO is a very attractive material as it is non-harmful and abundant, benefits from cheap and easy fabrication methods, has a wide bandgap (3,4 eV) and a higher absorption coefficient than other wide bandgap materials such as GaN. In our study, the LDSL containing ZnOx NPs fabricated via the Low Energy Cluster Beam Deposition (LECBD) of less than 10 nm in diameter was used [3]. These particles are able to absorb efficiently UV light (λ < 400 nm), where the Si-based solar cell spectral response (SR) is low, and re-emit photons at longer wavelengths (λ > 425 nm), where the SC’s SR increases. Further, the c-Si cell equipped with ZnOx NPs down-shifting converter was fabricated. A significant improvement of the SC’s external quantum efficiency in two specific spectral regions was observed (500 nm-850 nm and 850-1100 nm). References [1] W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961). [2] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Progress in Photovoltaics: Research and Applications, Special Issue: Adventures in Cu-Chalcogenide Solar Cells 20, 606 (2012). [3] A. Apostoluk, B. Masenelli, E. Tupin, B. Canut, D. Hapiuk, P. Melinon, J.-J. Delaunay, International Journal of Nanotechnology 11, 1240022 (2012). ×
    [abstract]
    APOSTOLUK A., ZHU Y., MASENELLI B., DELAUNAY J., SIBINSKI M., ZNAJDEK K., FOCSA A.,
    Workshop on recent development on Photovoltaic : Nanoparticles and Plasmonic, in the frame of GDR Nacre 3rd-5th April 2013 Cabourg, France (2013)
  • YAG:Ce nanoparticle lightsources: investigation of doping
    MASENELLI B., CUCHE A., MOLLET O., LEDOUX G., DUJARDIN C., MELINON P., HUANT S.,
    Workshop on doping in nanoparticles, (GDR Nacre) 10-12 septembre 2013 Villers-sur-mer (2013)

Communications par affiche dans un congrès international ou national (10 publications)

  • Optical Investigation of the Band Structure in Wurtzite InP Nanowires
    CHAUVIN N., MAVEL A., PATRIARCHE G., MASENELLI B., MACHON D., GENDRY M.,
    Nanowire Week 2017 May 29 - June 2, 2017 Lund, Sweden (2017)
  • Intense visible emission from the controlled defects in ZnO nanoparticles for energy down-shifting applications in solar cells
    APOSTOLUK A., ZHU Y., VALETTE A., GAUTIER P., ZNAJDEK K., SIBINSKI M., DELAUNAY J., MASENELLI B., DANIELE S.,
    Colloque National 2016 of GDR CNRS 3660 Oxydes fonctionnels: du matériau au dispositif OXYFUN 20th – 23rd March 2016 Autrans, France (2016)
  • Intense visible emission from the controlled defects in ZnO nanoparticles for energy down-shifting applications in solar cells
    APOSTOLUK A., ZHU Y., VALETTE A., GAUTIER P., ZNAJDEK K., SIBINSKI M., DELAUNAY J., MASENELLI B., DANIELE S.,
    EMRS 2015 Fall Meeting, Meeting of the European Materials Research Society 15th-18th September 2015 Warsaw, Poland (2015)
  • Metal oxides nanowires for optical gas sensing
    Metal oxides nanowires for optical gas sensing
    NGUYEN T., CONSONNI V., APPERT E., PARIZE R., GAILLARD F., MASENELLI B., VILQUIN B., APOSTOLUK A.,
    Zinc oxide (ZnO) nanowires were synthesised by a simple and cost-effective process, namely chemical bath deposition. X-ray diffraction (XRD) pattern clearly show that the nanowires are highly crystalline in nature with the wurtzite hexagonal structure. The room temperature UV-excited photoluminescence spectra show the excitonic band in the UV and a wide emission band centred in the visible. This visible emission is studied in the presence of toluene vapours and the results demonstrate the change of the photoluminescence of ZnO nanowire array and that the material is able to adsorb toluene efficiently. ×
    [abstract]
    NGUYEN T., CONSONNI V., APPERT E., PARIZE R., GAILLARD F., MASENELLI B., VILQUIN B., APOSTOLUK A.,
    JNTE 2015, Journées Nationales sur les Technologies Emergentes en Micronanofabrication 2015, Symposium Synthesis, integration and assembly of new materials 18th-20th November 2015 Ecully, France (2015)
  • Quantum confinement effect in InAs/InP quantum dot nanowires (QD-NWs) grown on silicon
    MAVEL A., REGRENY P., PATRIARCHE G., MASENELLI B., CHAUVIN N., GENDRY M.,
    Nanowires 2015 October 26-30, 2015 Barcelone, Spain (2015)
  • Improvement of solar cell efficiency using a luminescent top layer of ZnO nanoparticles
    APOSTOLUK A., ZHU Y., MASENELLI B., CANUT B., DELAUNAY J., SIBINSKI M., ZNAJDEK K.,
    8th Japanese-French Frontiers of Science Symposium JFFoS 2014 23rd-26th January 2014 Metz, France (2014)
  • Solar cell efficiency enhancement via a luminescent top layer of ZnO nanoparticles
    APOSTOLUK A., ZHU Y., MASENELLI B., CANUT B., DELAUNAY J., SIBINSKI M., ZNAJDEK K.,
    Workshop on above 25% efficiency solar cells via low cost approaches Chaire Concepts Avancés du Photovoltaïque Total-Ecole Polytechnique 10th July 2014 Saclay (2014)
  • Photoluminescence properties of ZnO nanostructures grown by chemical processes
    GUILLEMIN S., CONSONNI V., APOSTOLUK A., MASENELLI B., BREMOND G.,
    EMRS 2013 Spring Meeting 28th-30th May 2013 Strasbourg, France (2013)
  • Why do ZnO clusters look like LEGO?
    HAPIUK D., MASENELLI B., MASENELLI-VARLOT K., MELINON P.,
    Size Selected Clusters Symposium in Davos mars 2013 Davos (Suisse) (2013)
  • Zinc oxide nanoparticles as a luminescent layer for silicon solar cell efficiency improvement
    Zinc oxide nanoparticles as a luminescent layer for silicon solar cell efficiency improvement
    APOSTOLUK A., ZHU Y., MASENELLI B., CANUT B., DELAUNAY J., ZNAJDEK K., SIBINSKI M.,
    The maximal efficiency of a single junction photovoltaic solar cell (SC) is defined as the Shockley–Queisser limit, which determines the maximal output power which can be furnished by a solar cell under sunlight illumination, as a function of the bandgap of the semiconductor constituting the SC photoactive layer. The short wavelength (below 400 nm) spectral response of a SC can be improved if a luminescent down-converting layer is added to the SC structure. We propose the use of a layer containing ZnO nanoparticles (NPs) as a luminescent energy down-shifter. ZnO is able to absorb efficiently the ultraviolet light (λ < 400 nm), where the SC spectral response is low and to re-emit lower energy photons (longer wavelength photons) for which the SC spectral response is enhanced, thus increasing the total photocurrent. The structural and optical properties of ZnO NPs can be controlled and adjusted to obtain the highest visible photoluminescent emission, indicator of an efficient energy down-shifting. The measured SC’s external quantum efficiency before and after the deposition of the ZnO NPs layer on the SC front side shows the influence of the down-shifting layer on the final SC efficiency. ×
    [abstract]
    APOSTOLUK A., ZHU Y., MASENELLI B., CANUT B., DELAUNAY J., ZNAJDEK K., SIBINSKI M.,
    7th Japanese-French Frontiers of Science Symposium, JFFoS 2013 24th-27th January 2013 Otsu, Japan (2013)

Ouvrages scientifiques (ou chapitres de ces ouvrages) (1 publication)

  • Zinc oxide nanoparticles as luminescent down-shifting layer for solar cells
    ZHU Y., APOSTOLUK A., MASENELLI B., MELINON P.,
    SPIE Newsroom SPIE (2013)